

Education

KwaZulu-Natal Department of Education

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

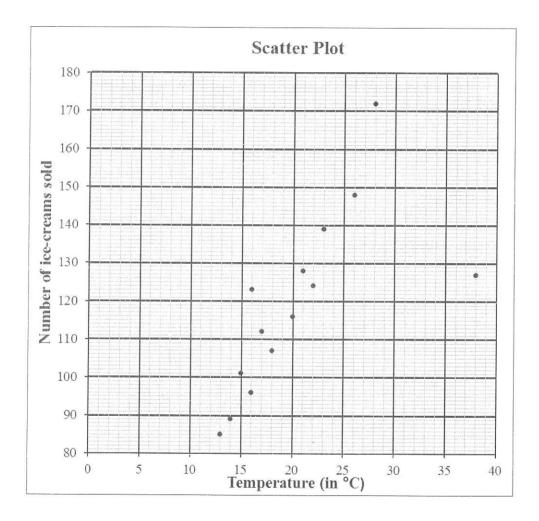
PREPARATORY EXAMINATION

SEPTEMBER 2018

MARKS: 150

TIME: 3 hours

N.B. This question paper consists of 11 pages, 1 information sheet and an answer book of 23 pages.


INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

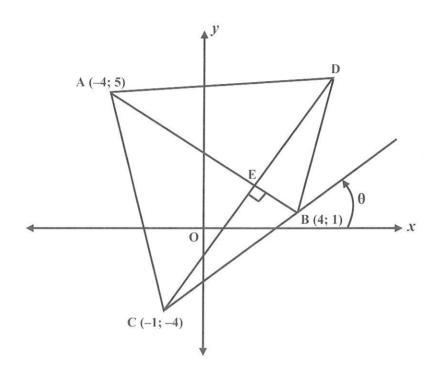
- 1. This question paper consists of 11 questions.
- 2. Answer ALL questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Mrs Simakuhle sells ice cream to high school learners in her neighbourhood. The sales were analysed over 14 randomly selected days. Each sale was compared with the recorded maximum on the day. This information is reflected in the table below.

Temperature (in °C)	15	21	17	22	20	16	16	23	38	13	28	14	26	18
Number of ice creams sold per day	101	128	112	124	116	96	123	139	127	85	172	89	148	107

- 1.1 Comment on the trend of the data. (1)
- 1.2 Identify the outlier in the data set. (1)
- 1.3 Determine the equation of the least squares regression line excluding the outlier. (3)
- 1.4 Predict the number of ice creams sold per day if the maximum air temperature is 24°C (2)

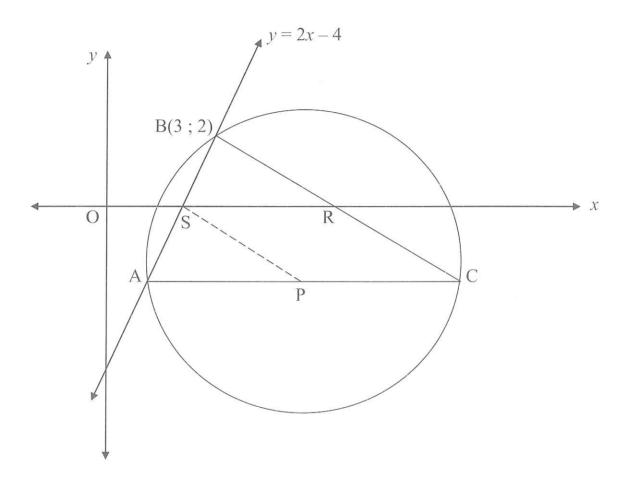
[7]


4 NSC

QUESTION 2

The following weights (in kgs) were recorded from 15 randomly selected weight lifters at a certain gymnasium.

79	80	85	88	89	89	92	94	101	105	106	107	108	112	113
2.1	Calcu	late the	mean	weight (of the v	veight l	ifters.						(2)	
2.2	Calcu	late the	standa	rd devia	ation of	f the rec	corded v	weights					(2)	
2.3				fters wo								/ou	(2)	
2.4	Draw	a box a	ınd whi	sker dia	ıgram f	for the a	ibove d	ata.					(5)	
2.5	Calcu	late the	IQR.										(2)	
2.6	Comn	nent on	the spr	ead of t	he data	ι.							(1)	
													[14	1]


In the diagram below, A (-4; 5); C (-1; -4), B (4; 1) and D are the vertices of a quadrilateral. E is the midpoint of CD and the point of intersection of the diagonals of ABCD. AB \perp CED. θ is the angle of inclination of line CB.

3.1 Determine

	3.1.1	the gradient of AB.	(2)
	3.1.2	the equation of AB.	(2)
	3.1.3	the equation of CD.	(3)
	3.1.4	the coordinates of E.	(5)
	3.1.5	the equation of the line parallel to BC and passing through A.	(3)
3.2	Calcul	ate the value of θ .	(2)
3.3	Calcul	ate the area of Δ AEC.	(4) [21]

In the figure, the straight line y = 2x - 4 and the circle $(x - 6)^2 + (y + 2)^2 = 25$ intersect at A and B(3; 2). P is the centre of the circle and APC is the diameter. Also R is the x – intercept of line BC and S is the x – intercept of AB.

- 4.1 Write down the coordinates of the centre of the circle, P. (2)
- 4.2 Calculate the coordinates of S. (2)
- 4.3 Determine the equation of the line BC. (4)
- 4.4 Determine the equation of the circle with centre R and passing through B and C. (5)
- 4.5 Show that AC // SR. (5)

[18]

5.1 Given:

4 tan $\alpha + 5 = 0$, $\alpha \in (0^{\circ}; 180^{\circ})$. Evaluate without using a calculator:

$$\sqrt{41} \cos \alpha - 4 \sin \left(-150^{\circ}\right) \cdot \cos 180^{\circ}$$
 (5)

5.2 Simplify, without the use of a calculator.

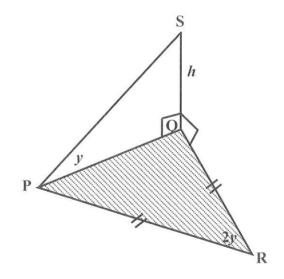
$$5.2.1 \quad \frac{\cos 99^{\circ}}{\cos 33^{\circ}} - \frac{\sin 99^{\circ}}{\sin 33^{\circ}} \tag{6}$$

$$5.2.2 \quad \frac{\cos 140^{\circ} - \sin (90^{\circ} - \theta)}{\sin 130^{\circ} + \cos(-\theta)} \tag{5}$$

5.3 Prove the identity:

$$\frac{2\sin^2 x}{2\tan x - \sin 2x} = \frac{\cos x}{\sin x} \tag{6}$$

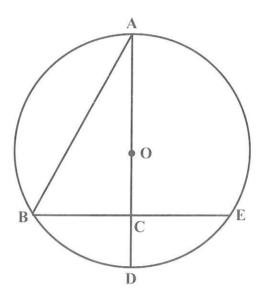
5.4 Determine the general solution of the following equation:


$$8 \sin \theta \cos \theta = -2 \sqrt{3} \tag{7}$$
 [29]

Given: $f(x) = 3 \cos x$ and $g(x) = \tan 2x$ for $x \in [-45^{\circ}; 225^{\circ}]$

- Sketch on the same set of axes the graphs of f and g. Clearly indicate any asymptotes using dotted lines. (8)
- One solution of the equation $3 \cos x = \tan 2x$ is 34° . Use your graph, to determine any other solutions in the given interval. (2)

QUESTION 7


In the diagram QS is a vertical pole. P and R are points in the same horizontal plane as Q such that QP = QR. The angle of elevation of the top of the pole S from P is y. Also SQ = h and $P\hat{R}Q = 2y$.

Prove that:

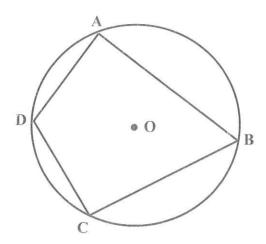
$$PR = \frac{h \cdot \cos^2 y}{\sin y \cdot \sin 2y}$$
 [6]

In the diagram below, AOCD is a diameter of the circle with centre O and chord BE = 30 cm. AOCD \perp BE and OC = 2CD.

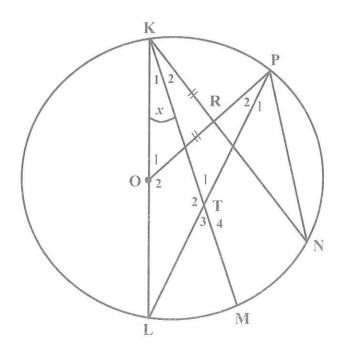
Calculate with reasons:

 $8.1 \quad BC$ (2)

8.2 If CD = a units, determine OC in terms of a. (1)

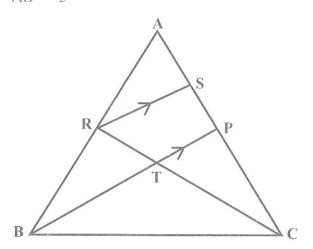

8.3 Calculate OB. (1)

8.4 AB (correct to one decimal place). (3)


8.5 the radius of the circle CAB. (2)

[9]

9.1 In the diagram below, ABCD is a cyclic quadrilateral of the circle with centre O. Use the diagram to prove the theorem which states that $\hat{B} + \hat{D} = 180^{\circ}$. (5)


8.2 KOL is the diameter of the circle KPNML having centre O. R is the point on chord KN, such that KR = RO. OR is produced to P. Chord KM bisects $L\hat{K}N$ and cuts LP in T. $K_1 = x$.

Prove with reasons that:

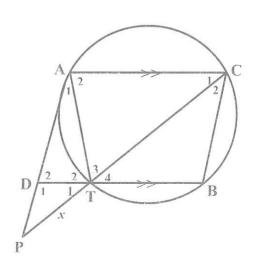
$$9.2.1 \quad TK = TL \tag{5}$$

In \triangle ABC, R is a point on AB. S and P are points on AC such that RS // BP. P is the midpoint of AC. RC and BP intersects at T. $\frac{AR}{AB} = \frac{3}{5}$.

Calculate with reasons, the following ratios:

$$10.1 \quad \frac{AS}{SC} \tag{3}$$

$$10.2 \quad \frac{RT}{TC} \tag{2}$$


$$10.3 \quad \frac{\Delta ARS}{\Delta ABC} \tag{3}$$

QUESTION 11

In the diagram alongside, ACBT is a cyclic quadrilateral. BT is produced to meet tangent AP on D. CT is produced to P. AC // DB.

11.1 Prove that
$$PA^2 = PT \cdot PC$$
 (5)

11.2 If PA = 6 units, TC = 5 units
and PT = x, show that
$$x^2 + 5x - 36 = 0$$
. (2)

[12]

TOTAL MARKS: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \quad A = P(1-ni) \qquad A = P(1-i)^a \qquad A = P(1+i)^a$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1 \qquad S_n = \frac{a}{1 - r}; -1 < r < 1$$

$$F = x \frac{[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$\ln \Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta + \cos \alpha .\cos \beta + \cos \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \cos$$

Education

KwaZulu-Natal Department of Education

MATHEMATICS P2

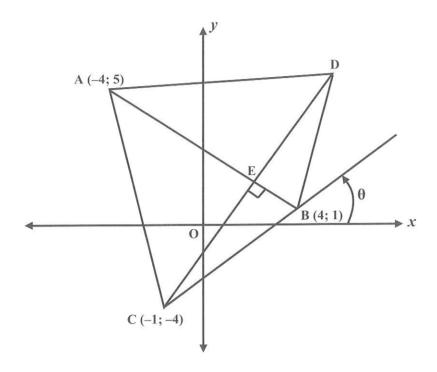
PREPARATORY EXAMINATION

SEPTEMBER 2018

ANSWER BOOK

NATIONAL SENIOR CERTIFICATE

GRADE 12

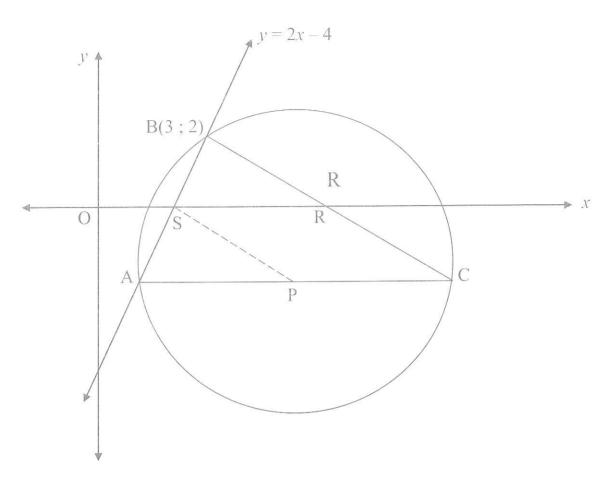

Marks: 150

Time: 3 hours

N.B. This answer book consists of 23 pages.

	Solution/Oplossing	Marks/ Punte
1.1		
		(1)
1.2		
		(1)
1.3		
		(5,
1.4		
		(2)
		[7]

	Solution/Oplossing	Marks/ Punte
2.1		
		(2
2.2		
		(2
2.3		
		(2)
2.4		
	70 75 80 85 90 95 100 105 110 115 120	
	100 100 110 113 120	(5)
2.5		
		(2)
2.6		
		The state of the s
		(1)
		[14]

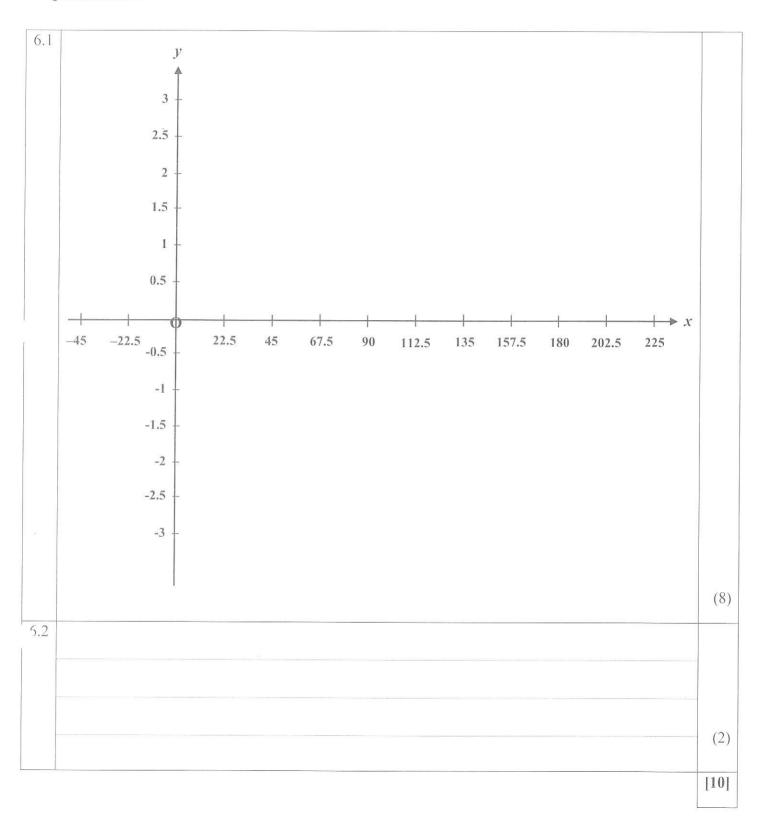


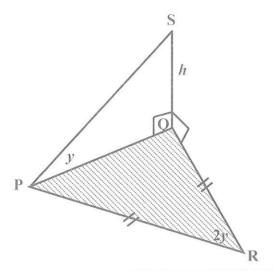
	Solution/Oplossing	Ma Pi	rks/ unte
3.1.1			
			(2)

	Solution/Oplossing	Marks/ Punte
3.1.2		
		(2)
2.1.2		(2)
3.1.3		
		(3)
		(3)

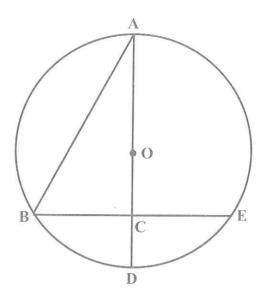
	Solution/Oplossing	Marks/ Punte
3.1.4		
		70
		(3)
3.1.5		
		(3)
3.2		
5.2		
		(2)

	Solution/Oplossing	Marks/ Punte
3.3		
		(4)
		[21]

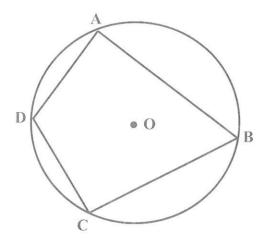

	Solution/Oplossing	Marks/ Punte
4.1		
		(',
4.2		
		(2)


	Solution/Oplossing	Marks/ Punte
4.3		1 unic
		(4)
4.4		
3.		
		(5)
4.5		
		(E)
		(5)
		[18]

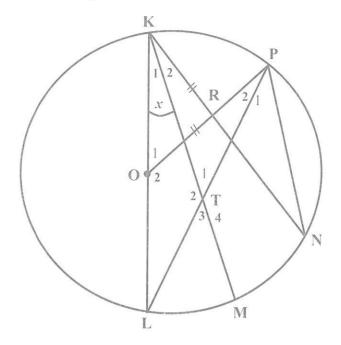
	Solution/Oplossing	Marks/ Punte
5.1		
		(5)
		(3)
5.2.1		
		(6)


5.2.2	Punte
	(5)
J.3	
	(5)

	Solution/Oplossing	Marks
		Punt
.4		
		500
		(7
	I	[29



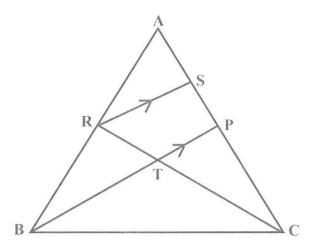
So	lution/Oplossing	Marks/ Punte
		Punte
		~~
		(6
		F /
		Toward .


	Solution/Oplossing	Marks/ Punte
8.1		
		(2)
8.2		
		(1)
8.3		
		(1)
0.1		
8.4		
		(3)

	Solution/Oplossing	Marks/ Punte
8.5		
		(2)
		[9]

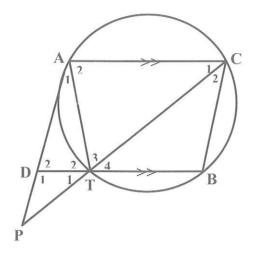
	Solution/Oplossing	Marks/ Punte
9.1		
		g
Į.		
		(5)

QUESTION 9 (CONTINUED)



	Solution/Oplossing	Marks/ Punte
9.2.1		
		(5)
9.2.2		
9.2.2		
		(3)

	Solution/Oplossing	Marks/ Punte
9.2.3		
		(3)
		[16]


Copyright Reserved

Please Turn Over

	Marks/ Put
	(3)
*	
	<u> </u>
	(2)

	Solution/Oplossing	Marks/ Punte
10.3		
		(3)
		[8]

	Solution/Oplossing	Mark ' Punte
11.1		
×		
		(5)
11.2		
		(2)

	Solution/Oplossing	Marks/ Punte
11.3		
		(2)
11.4		

TOTAL/TOTAAL: 150

(3)

[12]

Education

KwaZulu-Natal Department of Education

MATHEMATICS P2

MARKING GUIDELINE

PREPARATORY EXAMINATION

SEPTEMBER 2018

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

This marking guideline consists of 14 pages.

			T
1.1	strong positive trend	✓ A strong positive	(1)
1.2	(38; 127)	✓ A answer	(1)
1.3	a = 68,66 b = 2,46	✓ A a = 68,66 ✓ A b = 2,46	
	y = 68,66x + 2,46x	✓ CA equation	(3)
1.4	y = 68,66 + 2,46 (24) = 127,7 = 127	✓ CA ✓ CA answer	(2)
			[7]

2.1	Mean weight = $\bar{x} = \frac{1443}{15}$ = 96,2 kg	✓ A sum divided by 15 ✓ CA answer (only if dividing by 15)	(2)
2.2	σ = standard deviation = 11,27	✓✓ AA answer	(2)
2.3	$(\bar{x} - \sigma; \bar{x} + \sigma)$ = (84,93; 107,47) Therefore 2 scores are less than the standard deviation	✓CA identify range ✓CA answer	(2)
2.4	70 75 80 85 90 95 100 105 110 115 120	✓ A min value 79 ✓ A $Q_1 = 89$ ✓ A $Q_2 = 94$ ✓ A $Q_3 = 107$ ✓ A max value = 113	(5)
2.5	$IQR = Q_3 - Q_1$ = 107 - 89 = 18 $\bar{x} - \text{median} = 96.2 - 94.00$	✓ CA difference ✓CA answer	(2)
2.6	= 2,2 Data is positively skewed.	✓ CA answer	(1) [14]

3.1.1	$m_{AB} = \frac{y_2 - y_1}{y_2 - y_1}$		
	$= \frac{x_2 - x_1}{1 - 5}$	✓ A substitution into gradient formula	
	$= \frac{-4}{8}$ $= \frac{-1}{2}$	✓CA answer (provided – answer)	(2)
3.1.2	y = mx + c		
	$5 = -\frac{1}{2}(-4) + c$ $c = 3$	✓ CA substituting point and gradient of line AB	
	$y = -\frac{1}{2}x + 3$	✓CA answer	(2)
3.1.3	$m_{CD} = 2$ $CD \perp AB$	✓ CA CD⊥ AB	
	y = mx + c $-4 = 2(-1) + c$ $c = -2$	✓ A substituting point (-1;-4)	
	y = 2x - 2	✓ CA answer	(3)
3.1.4	$\therefore 2x - 2 = -\frac{1}{2}x + 3$	✓ CA Equating	
	$\frac{5}{2}x = 5$		
	$\therefore x = 2$	\checkmark CA $x = 2$	
	y = 2(2) - 2 $= 2$	\checkmark CA $y = 2$	
	∴ E(2; 2)	(CA if both co-ordinates are positive)	(3)

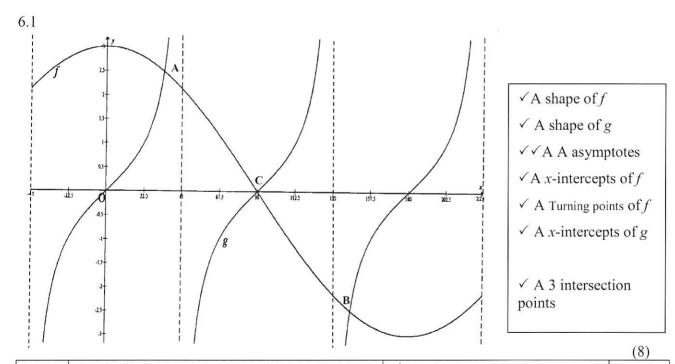
	NSC		
3.1.5	$m_{CB} = \frac{1 - \left(-4\right)}{4 - \left(-1\right)}$	✓ A substitution into gradient formula	
	Equation of line passing through A parallel to BC = 1 $y = mx + c$ $5 = 1(-4) + c$	✓ CA gradient value ✓ CA gradient of Line parallel ✓ A substitution of point (-4; 5)	
	c = 9 $y = x + 9$	✓ CA answer	(5)
3.2	$tan \theta = 1$ $\theta = 45^{\circ}$	✓ CA $\tan \theta = 1$ ✓ CA answer	(2)
3.3	$CE = \sqrt{(2 - (-1)^{2}) + (2 - (-4))^{2}}$ $= \sqrt{9 + 36}$ $= \sqrt{45}$ $= 3\sqrt{5}$ $AE = \sqrt{(2 - (-4))^{2} + (2 - 5)^{2}}$ $= \sqrt{36 + 9}$ $= \sqrt{45}$	✓CA answer	
	$=3\sqrt{5}$	✓ CA answer	
	Area of $\triangle AEC = \frac{1}{2}$ base x height $= \frac{1}{2} \cdot 3\sqrt{5} \times 3\sqrt{5}$ $= \frac{1}{2} \cdot 9 \times 5$ $= \frac{45}{2}$	✓ CA Correct substitution into Area formula	
	= 22,5 units ²	✓ CA Answer	(4) [21]

4.1	P(6;-2)	\checkmark A x – value \checkmark A y - value	(2)
4.2	2x - 4 = 0	✓ A equating to 0	
	x = 2 $S(2; 0)$	\checkmark A x – value	(2)
4.3	$A\hat{B}C = 90^{\circ}$ Angle in a semi-circle $m_{BC} = -\frac{1}{2} AB \perp BC$ $y = mx + c$	✓ A Statement ✓ A gradient of BC	
	$2 = -\frac{1}{2}(3) + c$	✓ A substitution of point (3;2)	
	$c = \frac{7}{2}$ $y = -\frac{1}{2}x + \frac{7}{2}$	✓CA answer	(4)
4.4	R(7; 0) x int of BC BR ² = $(7-3)^2 + (0-2)^2 = 20$ $(x-7)^2 \{+(y-0)^2 = 20$	✓CA for 7✓A for 0 coordinates of R ✓CA subst. into distance formula ✓CA radius value ✓CA answer	(5)
4.5	$m_{PS} = -\frac{1}{2}$ $\therefore PS // CB \qquad \text{equal gradients}$	✓ A✓ A gradient of PS ✓ A PS//CB	
	A(1; -2) midpoint formula Since the y – coordinates of A and P is – 2 Therefore AC//SR	✓ A coordinates of A ✓ A Reasoning	
	OR $m_{AC} = 0 \dots \text{(both y values are the same)}$ $m_{SR} = 0 \dots \text{(}x\text{-axis)}$ $m_{AC} = m_{SR}$	✓ A Statement ✓ A Reason ✓ A Statement ✓ A Reason ✓ A $m_{AC} = m_{SR}$	
	∴ AC//SR		(5) [18]

5.1	4 tan α +5=0		
	$\tan \alpha = \frac{-5}{4}$		
	$\frac{h}{\alpha}$	✓ A diagram in the correct quadrant	
	$h^2 = 5^2 + 4^2 = 41$ $\therefore h = \sqrt{41}$		
	$\therefore h = \sqrt{41}$	$\sqrt{A}\sqrt{41}$	
	$\cos 180^\circ = -1$	$\checkmark A \sqrt{41}$ $\checkmark A-1$	
	$\sin(-150^\circ) = -\sin 30^\circ$		
	$=-\frac{1}{2}$	\checkmark A $-\frac{1}{2}$	
	$\sqrt{41} \left(\frac{-4}{\sqrt{41}} \right) - 4 \left(-\frac{1}{2} \right) (-1) = -4 - 2 = -6$	✓CA answer	(5)

	NSC		
5.2.1	$\frac{\cos 99^{\circ}}{23^{\circ}} = \frac{-\sin 99^{\circ}}{\sin 23^{\circ}}$		
	cos33° sin33° cos99° sin33° – sin99° cos33°	✓ A Simplification	
	cos33° sin33		
	$\frac{-\left[\sin 99^{\circ} \cos 33^{\circ} - \cos 99^{\circ} \sin 33^{\circ}\right]}{\cos 33^{\circ} \sin 33^{\circ}}$	✓ A Taking negative sign out	
	$=\frac{-\sin(99^{\circ}-33^{\circ})}{\cos 33^{\circ}\sin 33^{\circ}}$	✓ A sin (99° -33°)	
	$=\frac{-\sin 66^{\circ}}{\cos 33^{\circ}\sin 33^{\circ}}$	✓ A sin 66°	
	$= \frac{-2\sin 33^{\circ} \cos 33^{\circ}}{\cos 33^{\circ} \sin 33^{\circ}}$	✓ A 2 sin 33° cos 33°	
	= -2	✓ A answer	(6)
5.2.2	$= \frac{-\cos 40^{\circ} - (\cos \theta)}{\sin 50^{\circ} + \cos \theta}$ $= \frac{-\cos 40^{\circ} - (\cos \theta)}{\cos 40^{\circ} + \cos \theta} = \frac{-(\cos 40^{\circ} + \cos \theta)}{(\cos 40^{\circ} + \cos \theta)}$ $= -1$	✓ A -cos 40° ✓ A cosθ (numerator) ✓ A sin 50° ✓ cosθ (denominator)	
		✓ CA answer	(5)
5.3	$\frac{2\sin^2 x}{\cos^2 x} = \frac{\cos x}{\sin^2 x}$		
	$2\tan x - \sin 2x \qquad \sin x$ $2\sin^2 x$		
	$=\frac{2\sin x}{2\sin x} - 2\sin x \cos x$	\checkmark A $2\sin x \cos x$	
	$\frac{2\sin^2 x}{2x^2+2x^2+2x^2}$	$\sin x$	
	$=\frac{2\sin x - 2\sin x \cos^2 x}{\cos x}$	$\checkmark A \frac{\cos x}{\cos x}$	
	$=\frac{2\sin^2 x.\cos x}{2\sin^2 x.\cos x}$		
	$2\sin x - 2\sin x \cos^2 x$ $2\sin^2 x \cos x$	✓ A Simplification	
	$= \frac{1}{2\sin x \left[1 - \cos^2 x\right]}$	\checkmark A removal of common factor of $2 \sin x$	
	$=\frac{2\sin x \cos x}{\sin^2 x}$	$\sin x \cos x$	
	$=\frac{\cos x}{x}$	\checkmark A $\sin^2 x$	
	$ sin x \\ = RHS $		(5)

5.4 $8 \sin \theta \cos \theta = -2\sqrt{3}$ $\frac{8 \sin \theta \cos \theta}{4} = \frac{-2\sqrt{3}}{4}$ $2\sin\theta\cos\theta = \frac{-\sqrt{3}}{2}$ $\sin 2\theta = \frac{-\sqrt{3}}{2}$ $\sin 2\theta = \frac{-\sqrt{3}}{2}$ $\cos \theta = \sin 2\theta$ $\sin 2\theta = \sin 2\theta$ $\cos \theta = \sin 2\theta$ $\cos \theta = \sin 2\theta$


 $2 \theta = (360^{\circ} - 60^{\circ}) + k \cdot 360^{\circ}, k \in \mathbb{Z}$ $2 \theta = 300^{\circ} + k \cdot 360^{\circ}, k \in \mathbb{Z}$ $\theta = 150^{\circ} + k \cdot 180^{\circ}, k \in \mathbb{Z}$

OR

 \checkmark CA 300° \checkmark CA θ = 150° + k . 180°, k ∈ Z

(7) [29]

QUESTION 6

the graphs intersect at A, B and C. At A we have $x = 34^{\circ}$, at C we have $x = 90^{\circ}$ and by using symmetry we get at B, $x = 180^{\circ} - 34^{\circ} = 40^{\circ}$ Answer only full marks [10]

QUESTION 7 As a result of the typographical error in the question paper this question will not be marked – Total of paper will now be 144 marks but must be converted to 150 for recording purposes)

7.	In Δ PQS	
	$\tan y = \frac{h}{PQ}$	$\checkmark \tan y = \frac{h}{PQ}$
	$\therefore PQ = \frac{h}{\tan y}$	
	$= \frac{h \cos y}{\sin y}$	$\checkmark PQ = \frac{h \cos y}{\sin y}$
	In Δ PQR	
	$P\hat{Q}R = \frac{180^{\circ} - 2y}{2}$ $= 90^{\circ} - y$	
		$\checkmark PQR = 90^{\circ} - 2y$
	$\therefore \frac{PR}{\sin(90^\circ - y)} = \frac{PQ}{\sin 2y}$	✓ applying sine rule
	$\therefore PR = \frac{PQ \cos y}{\sin 2y}$	$\checkmark \sin (90^\circ - y) = \cos y$
	$= \frac{h \cos y}{\sin y} \cdot \frac{\cos y}{\sin 2y}$	\checkmark subt PQ = $\frac{h \cos y}{\sin y}$
	$= \frac{h \cos^2 y}{\sin y \cdot \sin 2y}$	[6]

8.1	BC = 15 cm line from centre \perp chord	✓✓AA S&R	(2)
8.2	OC = 2a	✓ A answer	(1)
8.3	OB = 3a	✓CA answer	(1)
8.4	$(3a)^2 = (2a)^2 + (15)^2$ (Pythagoras)	✓CA applying Pythagoras	
	$\therefore 9a^2 = 4a^2 + 225$	Tymagorus	
	$\therefore 5a^2 = 225$		
	$\therefore a^2 = 45$		
	$\therefore a = \sqrt{45}$	\checkmark CA $a = \sqrt{45}$	
	$AB^2 = 15^2 + (5a)^2$ (Pythagoras)		
	$= 225 + 25 (45)$ ∴ AB = $\sqrt{1350} = 15\sqrt{6}$		

	NSC		
=	36,7 cm	✓CA answer	(3)
			1 2 2 2 2 2
AĈP –	000		
ACD =	90		
∴ AB is a dia	meter of circle CAB [converse of angle in	✓A Reason	
	semi circle]		
· Pading	- diameter		
Radius	- — diameter 2		
	Ì		
	$=\frac{1}{2}$ 36,7 cm		
	<u> </u>		
	= 18,4 cm	✓CA answer	(2)
			191
	AĈB =	= 36,7 cm AĈB = 90° ∴ AB is a diameter of circle CAB [converse of angle in semi circle] ∴ Radius = $\frac{1}{2}$ diameter = $\frac{1}{2}$ 36,7 cm	= 36,7 cm AĈB = 90° ∴ AB is a diameter of circle CAB [converse of angle in semi circle] ∴ Radius = $\frac{1}{2}$ diameter = $\frac{1}{2}$ 36,7 cm

9.1			
	Construction: Draw AO and CO Proof: $\hat{O}_1 = 2\hat{B} \angle$ at centre = 2 \angle at circle $\hat{O}_2 = 2\hat{D} \angle$ at centre = 2 \angle at circle $\hat{O}_1 + \hat{O}_2 = 360^\circ$ $2\hat{B} + 2\hat{D} = 360^\circ$ $\hat{B} + \hat{D} = 180^\circ$	✓ A Construction ✓ A S/R ✓ A S/R ✓ A $\hat{O}_1 + \hat{O}_2 = 360^\circ$ (revolution) ✓ A Substitute for \hat{O}_1 and \hat{O}_2	(5)
9.2.1	$\hat{K}_1 = x = \hat{K}_2 \dots$ KM bisects L \hat{K} N $\hat{O}_1 = 2x$ angles opp = sides $\therefore \hat{L} = x $	(All Accuracy Marks) ✓ S ✓ R ✓ S ✓ R ✓ R	(5)

9.2.2		✓ S ✓R	
	$\hat{T}_1 = 2x \dots \text{ ext } \angle \text{ of } \Delta \text{ QKL}$, s , k	
	$\hat{T}_1 = \hat{O}_1 = 2x$		
	∴ KOTP is a cyclic quadrilateralconverse of ∠'s on the same segment equal.	✓ R	(3)
		(All Accuracy Marks)	(0)
9.2.3	$\hat{P}_1 = L\hat{K}N$ Angles in the same segment	✓ S ✓R	
	=2x		
	$\therefore \hat{P}_1 = \hat{T} = 2x$		(3)
	∴ PN // MK alt ∠'s proved equal	✓ R	
	÷ •	(All Accuracy Marks)	
			[16]

10.1	$\frac{AS}{SP} = \frac{AR}{RB} \dots RS // BP$	✓ S/R	
	$=$ $\frac{3}{2}$	$\begin{array}{c} \checkmark \frac{3}{2} \\ \checkmark \frac{3}{7} \end{array}$	
	$\therefore \frac{AS}{SC} = \frac{3}{7}$	and the second s	(3)
		(All Accuracy Marks)	
10.2	$\frac{RT}{TC} = \frac{SP}{PC} \dots RS//TP$	✓ S/R	
	$\frac{RT}{TC} = \frac{SP}{PC} \dots RS//TP$ $= \frac{2}{5}$	$\sqrt{\frac{2}{5}}$	(2)
10.3	$\frac{\Delta ARS}{\Delta ABC} = \frac{\Delta ARS}{\Delta ARC} \times \frac{\Delta ARC}{\Delta ABC}$	✓ratio of Δ's	
	$=\frac{3}{10}\times\frac{3}{5}$	✓substitution	
	$=\frac{9}{50}$	✓CA answer (All Accuracy Marks if not indicated)	(3)
		not indicated)	[8]

11.1	In Δ PAT and Δ PCA	✓ S (identifying triangles)	
	1. \hat{P} is common 2. $\hat{A}_1 = \hat{C}_1$ tan chord thrm.	✓ S ✓ S	
	3 $P\hat{T}A = P\hat{A}C$ sum of angles in triangle		
	$\therefore \triangle PAT /\!/\!/ \triangle PCA ((\angle \angle \angle)$	✓ S/R	
	$\therefore \frac{PA}{PC} = \frac{PT}{PA} (/// \Delta's)$	✓ S	
	$\therefore PA^2 = PC \cdot PT$		
		All accuracy marks	
			(5)
11.2	$PA^2 = PC \cdot PT$		
	$∴ 36 = (x + 5) x$ $∴ 36 = x^2 + 5x$ $∴ x^2 + 5x - 36 = 0$	✓ A subst. ✓ A simplifying	(2)
11.3	(x+9)(x-4) = 0 x = -9 or x = 4	✓ A factorising ✓ A PT = 4	
	N/A $\therefore PT = 4 \text{ units}$		(2)
11.4	$\frac{PD}{PA} = \frac{PT}{PC}$ (AC//DB; prop. theorem)	√s √r	
	$DP = \frac{4}{9}. 6$		
	$DP = \frac{4}{9}.6$ $= \frac{8}{3}$	✓CA answer	(3)
	, J.		[12]

TOTAL MARKS: 150