

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

MARCH 2019

MARKS: 100

TIME: 2 hours

This question paper consists of 9 pages and 1 information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answers **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, etc cetera that you have used in determining yours answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Given the quadratic sequence: 2; 5; 10; 17; ...

- 1.1 Write down the next **two** terms of the quadratic sequence. (2)
- 1.2 Calculate the n^{th} term of the quadratic sequence. (4)

[6]

QUESTION 2

- 2.1 Given the combined constant and arithmetic sequences:
 - 5; 4; 5; 7; 5; 10; ...

Determine the position of the term 1051 in the combined sequence. (3)

- 2.2 The series $3 + 8 + 13 + \dots$ consists of *n* terms. The sum of the last three terms is 699.
 - 2.2.1 Determine the sum to n terms in terms of n. (2)
 - 2.2.2 If the last three terms are excluded from the series, then determine in terms of *n* the sum of the remaining terms. (2)
 - 2.2.3 Hence, or otherwise, determine the value of n. (3)

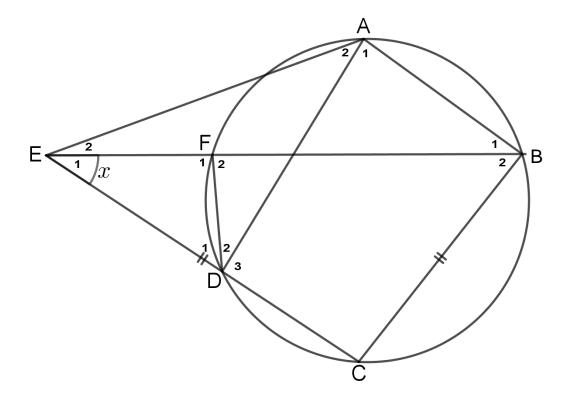
[10]

QUESTION 3

- 3.1 The sixth term of a geometric sequence is 80 more than the fifth term.
 - 3.1.1 Show that $a = \frac{80}{r^5 r^4}$. (2)
 - 3.1.2 If it is further given that sum of the fifth and sixth terms is 240, determine the value of the common ratio. (5)
- 3.2 Write the geometric series 9 + 3 + 1; ... to 130 terms in sigma notation. (2)

[9]

In the diagram below, BC = CE; $\hat{E}_1 = x$ and $\hat{D}_1 = \hat{D}_2$.



- 4.1 Name, with reasons, TWO other angles each equal to x and show that FD = FE. (4)
- 4.2 Prove that BF bisects $C\hat{B}A$. (4)
- 4.3 Hence, or otherwise, prove that $\hat{A}_1 = C\hat{B}A$. (4)

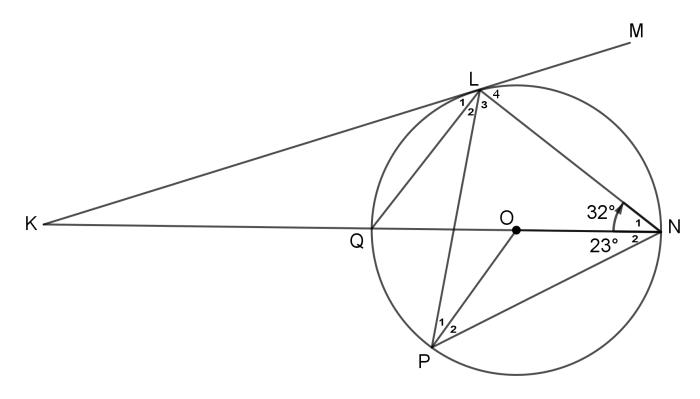
[12]

5.1 The angle at the point of contact between a tangent to a circle and a chord is ------. (1)

5.2 In the sketch below, circle centre O has a tangent KLM.

Diameter NQ produced meet the tangent in K.

$$\hat{N}_1 = 32^{\circ} \text{ and } \hat{N}_2 = 23^{\circ}.$$



Calculate, with reasons, the size of:

5.2.1
$$\hat{P}_2$$
 (1)

$$5.2.2 \quad P\hat{O}Q \tag{2}$$

5.2.3
$$\hat{L}_2$$
 (2)

$$5.2.4$$
 \hat{NLQ} (1)

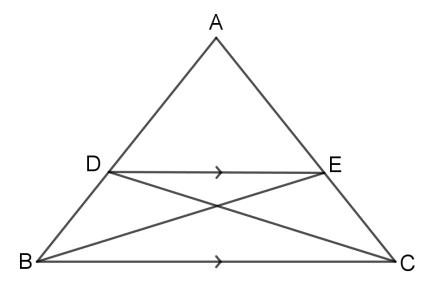
5.2.5
$$\hat{L}_3$$
 (2)

$$5.2.6 \quad P\hat{L}K \tag{2}$$

[11]

Copyright Reserved

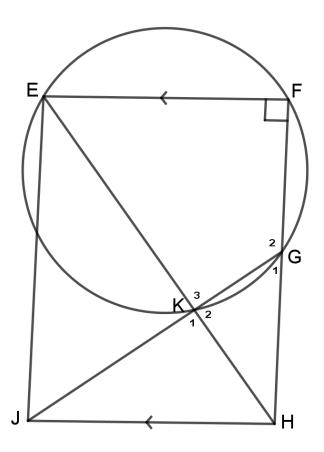
In the diagram below, $\triangle ABC$ has $DE \parallel BC$. Prove the theorem that states $\frac{AD}{DB} = \frac{AE}{EC}$.



[7]

In the diagram below, EFGK is a cyclic quadrilateral with $\hat{F} = 90^{\circ}$.

EK and FG are produced to meet at H. HJ is drawn parallel to FE. GK produced meets HJ at J.



7.1 Prove that:

$$7.1.1 J\hat{H}F = 90^0 (2)$$

$$7.1.2 \quad \hat{K}_2 = 90^0 \tag{2}$$

7.1.3
$$\triangle$$
 HKG $\parallel \triangle$ JHG (3)

7.2 Calculate JG and KG if
$$HG = 5 \text{cm}$$
 and $JH = 10 \text{cm}$. (4)

[11]

QUESTION 8 (ANSWER THIS QUESTION WITHOUT THE USE OF CALCULATOR)

8.1 Show

$$\frac{\sin(90^\circ + x)\cos x \tan(-x)}{\cos(180^\circ + x)} = \sin x$$

(4)

8.2 If $\sin 36^0 = m$, and $\cos 24^0 = n$, determine the following in terms of m and / or n:

$$8.2.1 \cos 36^{\circ}$$
 (3)

$$8.2.2 \sin 12^{\circ}$$
 (4)

8.3 Simplify:

$$\frac{2\cos 285^{\circ}\cos 15^{\circ}}{\cos (45^{\circ} - x)\cos x - \sin (45^{\circ} - x)\sin x}$$

(5)

8.4 Calculate the value of

$$(\sin 3x - \cos 3x)^2$$
 if $\sin 6x = -\frac{2}{5}$

(4)

[20]

Given $f(x) = \sin x + 1$ and $g(x) = \cos 2x$

- 9.1 Show that f(x) = g(x) can be written as $(2 \sin x + 1) \sin x = 0$. (2)
- 9.2 Hence or otherwise determine the general solution of $\sin x + 1 = \cos 2x$. (6)
- 9.3 Write down the range of g(x) 1. (1)
- 9.4 Consider the following geometric series

$$1 + 2\cos 2x + 4\cos^2 2x + \cdots$$

Determine the values of x for the interval $0^{\circ} \le x \le 90^{\circ}$ for which the series will converge. (5)

[14]

TOTAL MARKS: [100]

INFORMATION SHEET: MATHEMATICS

INLIGTINGSBLAD: WISKUNDE

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1-ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)a$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \ne 1$ $S_\infty = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \triangle ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

MATHEMATICS

MARKING GUIDELINE

COMMON TEST

MARCH 2019

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This marking guideline consists of 10 pages.

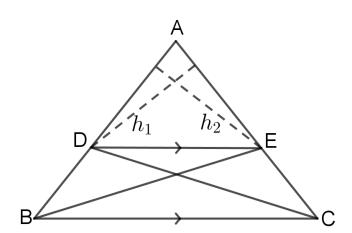
AA✓✓ correct values	2
$A \checkmark a$ value $CA \checkmark b$ value	
$CA \checkmark c$ value $CA \checkmark general \text{ term}$ OR	
A ✓ a value CA ✓ b value A ✓ c value CA ✓ general term OR A ✓ formula A ✓ substituting first and second difference values CA ✓ simplifying CA ✓ general term	4
OR A√formula A√correct substitution into formula CA√simplifying CA√general term	4
	CA ✓ b value CA ✓ c value CA ✓ general term OR A ✓ a value CA ✓ b value A ✓ c value CA ✓ general term OR A ✓ formula A ✓ substituting first and second difference values CA ✓ simplifying CA ✓ general term OR A ✓ formula A ✓ correct substitution into formula CA ✓ simplifying

2.1	3n + 1 = 1051	A \checkmark equating <i>n</i> th term to 1051	
	3n = 1050		
	n = 350	$CA\checkmark$ value of n	
	1051 is in the 700 th position	CA✓conclusion	3
2.2.1	a = 3, d = 5	$A \checkmark d = 5$	
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$= \frac{n}{2} [2(3) + (n-1)(5)]$	CA \checkmark substitution of $a \& d$ into sum formula	
	$=\frac{n}{2}[5n+1]$		2
2.2.2	n-3 r	A ✓ n – 3	
	$S_{n-3} = \frac{n-3}{2} [5(n-3) + 1]$	CA✓substituting into sum formula	
	$=\frac{n-3}{2}\big[5n-14\big]$		2
2.2.3	$S_n - S_{n-3} = 699$ $\frac{n}{2}[5n+1] - \frac{n-3}{2}[5n-14] = 699$ $n(5n+1) - (n-3)(5n-14) = 1398$ $5n^2 + n - 5n^2 + 29n - 42 = 1398$	CA√forming equation	
	30n = 1440	CA√ simplification	
	n = 48	CA \checkmark answer (<i>n</i> must be a natural number)	3
	OR	OR	
	$T_n = 5n - 2$		
	$T_{n-1} = 5(n-1) - 2$		
	$T_{n-2} = 5(n-2) - 2$	CA ✓ forming equations	
	15n - 21 = 699		
	n=45	CA√ simplification	3
		CA \checkmark answer (n must be a natural number)	
			[10]

3.1.1	$T_{6} = 80 + T_{5}$ $ar^{5} = 80 + ar^{4}$ $ar^{5} - ar^{4} = 80$ $a(r^{5} - r^{4}) = 80$ $a = \frac{80}{r^{5} - r^{4}}$	A√ forming equation A√ factorizing	2
3.1.2	$T_5 + T_6 = 240$ $ar^4 + ar^5 = 240$ $a(r^4 + r^5) = 240$ $a = \frac{240}{r^4 + r^5}$ $\frac{80}{r^5 - r^4} = \frac{240}{r^5 + r^4}$ $80r^5 + 80r^4 = 240r^5 - 240r^4$ $320r^4 = 160r^5$ $r = 2$	A√forming equation CA√factorizing CA√equating CA√simplifying CA√r – value	
	DR Let the fifth term be = x and sixth term = y , then $x + y = 240 \rightarrow (1)$ $-x + y = 80 \rightarrow (2)$ $(1) + (2)$ $2y = 320$ $y = 160; x = 80$ $r = \frac{160}{80} = 2$	OR A forming equation (1) A forming equation (2) $CA \checkmark y - \text{value}$ $CA \checkmark x - \text{value}$ $CA \checkmark r - \text{value}$	5
3.2	$\sum_{k=1}^{130} 9 \left(\frac{1}{3}\right)^{k-1}$	A \checkmark upper and lower limit values $A \checkmark k^{\text{th}} \text{ term}$	2
			[9]

4.1	$\hat{B}_2 = \hat{E}_1 = x$ (BC = CE) $\hat{D}_1 = \hat{B}_2 = x$ (Ext. \angle of cyclic quad = interior opposite angles)	A✓ S/R A✓ S A✓R	
	$\therefore \widehat{D}_1 = \widehat{E}_1$ $\therefore \text{FD} = \text{FE}$	A✓ S	(4)
4.2	$\widehat{D}_2 = \widehat{D}_1 = x$ given	A√S	
	$\widehat{D}_2 = \widehat{B}_1 = x \dots$ subtended by arc AF	A√S A √R	
	$\therefore \hat{B}_1 = \hat{B}_2$	A√ S	
	∴EB bisects $C\widehat{B}A$		
			(4)
4.3	$\hat{A}_1 = \hat{F}_2$ subtended by arc	A√S A√R	
	$\hat{F}_2 = 2x \dots \text{ ext. } \angle \text{ of } \triangle \text{DFE}$	A√S A√R	
	$\therefore \hat{A}_1 = 2x = C\hat{B}A$		(4)
			(4)
			[12]

5.1	equal to the angle subtended by the chord in the opposite circle segment.	A√S	(1)
5.2.1	$\hat{P}_2 = 23^\circ \dots \text{(ON = OP; radii)}$	A✓ S/R	(1)
5.2.2	$P\hat{O}Q = 2\hat{N}_2 = 46^{\circ} \dots (\angle \text{at centre}) / (\text{Ext } \angle \text{of} \Delta)$	A√S A√R	(2)
5.2.3	$\hat{L}_2 = \hat{N}_2 = 23^{\circ}$ (subt. by arc PQ)	A√S A√R	(2)
5.2.4	$N\hat{L}Q = 90^{\circ}$ (subt. by diameter NQ)	A√S/R	(1)
5.2.5	$\hat{L}_3 = 90^{\circ} - 23^{\circ}$	CA✓ S	
	= 67° OR	CA✓ answer	(2)
	$P\hat{O}N = 134^{\circ}$ (angles of triangle)	OR	
	$P\hat{O}N = 2\hat{L}$ (angle at centre theorem)	CA✓ S	
	= 67°	CA✓ answer	(2)
5.2.6	$P\hat{L}K = L\hat{N}P$ (tan-chord theorem) = $32^{\circ} + 23^{\circ}$	A✓ S/R	
	$= 52^{\circ} + 25^{\circ}$	A✓ answer	(2)
			[11]



Construction: Draw line $h_1 \perp AC$ and $h_2 \perp AB$	A✓ construction
Proof:	
$\frac{Area\ of\ \Delta ADE}{Area\ of\ \Delta BDE} = \frac{\frac{1}{2}.\ AD.\ h_2}{\frac{1}{2}.\ DB.h_2}$ same height h_2	A✓ S A✓ R
and $\frac{Area\ of\ \Delta ADE}{Area\ of\ \Delta CED} = \frac{\frac{1}{2}.\ AE.\ h_1}{\frac{1}{2}.\ EC.\ h_1}$ same height h_1	A✓ S/R
but $area \ of \ \Delta BDE = area \ of \ \Delta CED$ $\therefore (same \ base \ DE; the \ same \ height; \ DE \parallel BC)$	AA✓ S/✓ R
$\therefore \frac{Area \ of \ \Delta ADE}{Area \ of \ \Delta BDE} = \frac{Area \ of \ \Delta ADE}{Area \ of \ \Delta CED}$	A✓ S
$\therefore \frac{AD}{DB} = \frac{AE}{EC}$	
	[7]

7.1			
7.1.1	$J\widehat{H}F + \widehat{F} = 180^{\circ} \dots$ Co-interior angles; JH // EF	A✓ S/R	
	$\therefore J\widehat{H}F = 90^{\circ} \dots \widehat{F} = 90^{\circ} (given)$	A√ S	(2)
7.1.2	$\widehat{K}_2 = \widehat{F} = 90^{\circ}$ ext. \angle of cyclic quad	AA✓✓ S/R	(2)
7.1.3	In ΔHKG and ΔJHG		
	$\widehat{G_1} = \widehat{G_1} \dots$ common	A✓ S/R	
	$\widehat{K}_2 = J\widehat{H}G = 90^{\circ} \dots$ proved	A✓ S/R	
	$\therefore K\widehat{H}G = H\widehat{J}G \dots \text{remaining } \angle$		
	$\therefore \Delta HKG///\Delta JHG \dots (\angle \angle \angle)$	A✓ R	(3)
7.2	$JG^2 = HJ^2 + HG^2$ Pythagoras		
	$= 10^2 + 5^2$		
	$= 125 \text{cm}^2$		
	$JG = \sqrt{125cm^2}$		
	$= 5\sqrt{5}$ cm	A √ 5√5	
	KG HG		
	$\frac{KG}{HG} = \frac{HG}{JG}$	A√ ΔHKG///ΔJHG	
	$KG = \frac{HG^2}{IG}$		
	j d		
	$=\frac{5^2}{5\sqrt{5}}$	CA✓ substitution	
	$= \frac{5}{\sqrt{5}}$ $= \frac{5\sqrt{5}}{5}$		
	$= \frac{5\sqrt{5}}{5}$		
	$=\sqrt{5}$ cm	CA✓ answer in any form	
	= 2,24 cm		(4)
			[11]

8.1	$(\cos x)(\cos x)(-\tan x)$	$A\sqrt{-\tan x}$	
0.1	$\frac{(\cos x)(\cos x)(-\tan x)}{\cos x}$		
	$-\cos x$	$A\checkmark\cos x$	
	$-\frac{\cos x}{\cos x)(\cos x)\left(\frac{\sin x}{\cos x}\right)}$	$A\sqrt{\frac{\sin x}{\cos x}}$	
	$-\frac{(\cos x)(\cos x)}{\cos x}$	$\cos x$	
	$-\frac{\cos x}{\cos x}$	$A \checkmark \cos x$	
	$=\sin x$		(4)
	5111 %		(4)
8.2			
8.2.1			
	$\sqrt{1-n^2}$		
	["]		
	360 240		
	$\frac{1}{\sqrt{1-m^2}}$ n	A✓ A ✓ diagrams	
	$\sqrt{1-m}$	11. 11. diagrams	
	(A) (B)		
	2.50	G . (/ 1 - 2	
	$\cos 36^{\circ} = \sqrt{1 - m^2}$	$CA \checkmark \sqrt{1-m^2}$ answer	
			(2)
			(3)
8.2.2	$\sin 12^{\circ} = \sin (36^{\circ} - 24^{\circ})$	A ✓ compound angle	
	$= \sin 36^{\circ} \cos 24^{\circ} - \cos 36^{\circ} \sin 24^{\circ}$	A✓ expansion	
		CACA ✓ answer	(4)
	$= m n - \left(\sqrt{1 - m^2}\right)\left(\sqrt{1 - n^2}\right)$		(4)
	OR	OR	
	1-cos24°		
	$\sin 12^{\circ} = \sqrt{\frac{1-\cos 24^{\circ}}{2}}$	A✓ A✓	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CACA✓✓ answer	(4)
	$= \left \frac{1-n}{n} \right $		
	√ 2		
8.3	2 cos 75° cos 15°	A√cos 75°	
	$\cos[45^{\circ} - x + x]$		
	2 sin 15° cos 15°	A√cos[45°]	
	$=\frac{251115}{2}$		
	$= \frac{2 \sin 13 \cos 13}{\cos 45^{\circ}}$ $= \frac{\sin 30^{\circ}}{15^{\circ}}$	A√sin 15°	
	$=\frac{\sin 30^{\circ}}{}$		
	$=\frac{\cos 45^{\circ}}{\cos 45^{\circ}}$	$A\checkmark \frac{\sin 30^{\circ}}{\cos 45^{\circ}}$	
	1 1	cos 45°	
	$=\frac{1}{2}$		
	- V L		
	$-\frac{\sqrt{2}}{2}$	CA ✓ answer in any form	(5)
	_ 2		(5)
8.4	$\sin^2 3x - 2\sin 3x \cos 3x + \cos^2 3x$	A√expansion	
	$=1-\sin 2(3x)$	$A\checkmark 1 - \sin 2(3x)$	
	$= 1 - \sin 2(3x)$ $= 1 - \sin 6x$		
		$A\checkmark1-\left(\frac{-2}{5}\right)$	
	$=1-\left(\frac{-2}{5}\right)$		
	\ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	$\begin{bmatrix} 2 \end{bmatrix}$	A Languagin any form	
	$=1\frac{2}{5}$	A✓answer in any form	(4)
	<u> </u>		
			[20]

9.1	$\sin x + 1 = 1 - 2\sin^2 x$		A√equating	
	$2\sin^2 x + \sin x = 0$		A✓ standard form	
	$\sin x \left(2\sin x + 1 \right) = 0$			(2)
9.2	$\sin x (2 \sin x + 1) = 0$ $\sin x = 0$ or $x = 0^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $x = 180^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	$2 \sin x = -1$ $\sin x = -\frac{1}{2}$ $x = 210^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$ $x = 330^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$	$A \checkmark \sin x = 0$ $A \checkmark \sin x = -\frac{1}{2}$ $A \checkmark 0^{\circ} + k.360^{\circ}$ $A \checkmark k \in \mathbb{Z}$ $CA \checkmark 210^{\circ} + k.360^{\circ}$ $CA \checkmark 330^{\circ} + k.360^{\circ}$	(6)
9.3	$-2 \le y \le 0$		A√answer	(1)
9.4	$r = 2\cos 2x$ -1 < 2 cos 2x < 1 $\frac{-1}{2} < \cos 2x < \frac{1}{2}; \text{ If } \cos 2x = \frac{1}{2}$ ∴ 2x = 60° then x = 30° ∴ 30° < x < 90°		$A \checkmark r = 2 \cos 2x$ $A \checkmark -1 < r < 1$ $CA \checkmark$ $\frac{-1}{2} < \cos 2x < \frac{1}{2}$ $CA \checkmark x = 30^{\circ}$ $CA \checkmark answer$ $30^{\circ} < x < 90^{\circ}$	(5)
				[14]

TOTAL MARKS: [100]