# Downloaded from Stanmorephysics.com



# education

Department:
Education
PROVINCE OF KWAZULU-NATAL

**GRADE 12** 

## NATIONAL SENIOR CERTIFICATE

**MATHEMATICS P2** 

**COMMON TEST** 

**JUNE 2019** 

MARKS: 150

TIME: 3 hours

N.B. This question paper consists of 10 pages, 1 information sheet and an answer book with 18 pages.

#### INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- Answer ALL the questions.
- Number the answers correctly according to the numbering system used in this question paper.
- Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 5. Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

The time taken, in minutes, to complete a 5 km race by 10 athletes of an Athletic Club is given below.

|        | 1 2 2 | 2 2 2 3 3 3 3 |    | ALCOHOLOGICA CONTRACTOR |     | the second second |    |      | Property Control |
|--------|-------|---------------|----|-------------------------|-----|-------------------|----|------|------------------|
| 16     | 118   | 119           | 20 | 121                     | 122 | 22                | 24 | 20   | 20               |
| - 04 S | 1.0   | 12            | 20 | 21                      | 22  | 43                | 24 | 1 28 | 129              |

1.1 Calculate the mean time taken to complete the race.

(2)

1.2 Calculate the standard deviation.

- (2)
- 1.3 Draw a box and whisker diagram to represent the five number summary of the above information.
- (4)
- 1.4 How many runners completed the race within one standard deviation of the mean time?

(3) [11]

#### **QUESTION 2**

A certain company develops a new product and does some market research. The table below is a summary of the ages of people who say they will buy the product.

| Age             | Frequency | Cumulative<br>Frequency |
|-----------------|-----------|-------------------------|
| $5 < x \le 15$  | 200       | 200                     |
| $15 < x \le 25$ | A         | 450                     |
| $25 < x \le 35$ | 20        | 470                     |
| $35 < x \le 45$ | 32        | В                       |
| $45 < x \le 55$ | 23        | 525                     |
| $55 < x \le 65$ | 300       | 825                     |
| $65 < x \le 75$ | 475       | 1300                    |

.1 Calculate the values of A and B in the table above.

- (2)
- 2.2 Calculate the estimated mean age of the people who say they will buy the new product.
- (3)

2.3 Find the modal class interval.

(2)

2.4 Sketch the ogive on the grid provided on the diagram sheet.

(3)

- 2.5 Use your sketch to answer the following question:
  - Is the data normally distributed? Give a reason for your answer.

(2)

[12]

Please Turn Over

#### **QUESTION 3**

In the diagram, A(1; 4); B(-2; -2) and C(4; 1) are vertices of  $\triangle$  ABC in a Cartesian plane. M is the midpoint of AB. E is on AC, D is on BC such that DM  $\perp$  AB. ME and BE are joined. The inclination of line CB is  $\theta$ .



(2) Calculate the length of BC, in simplified surd form. 3.1 (2) Determine the co-ordinates of M, the midpoint of AB. 3.2 (4) Determine the equation of MD. 3.3 If ME BC, calculate the co-ordinates of E, with reasons. (3) 3.4 (3) Determine the equation of BE. 3.5 (4)Calculate the size of  $\theta$ . 3.6 [18]

Copyright Reserved

PV, PL and VL are tangents to the circle, centre A(2; -1) at Q, R and N respectively. The co-ordinates of Q and R are (-6; -7) and (10; -7) respectively. The inclination of PL is  $\beta$  and PV is  $\alpha$ .



4.1 Calculate the length of AQ. (2)

4.2 Write down the equation of the circle whose centre is A in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (2)

4.3 Calculate the gradients of:

4.4 Determine the equations of:

4.5.1 Calculate the co-ordinates of P. (4)

4.5.2 Express 
$$\widehat{P}$$
 in terms of  $\alpha$  and  $\beta$ . (2)

4.5.3 If 
$$\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)}$$
, show that  $\tan P = \frac{24}{7}$ . (4)

[22]

5.1 If  $4 \tan A = 3$  and  $3 \sin B - 1 = 0$ , where  $180^{\circ} \le A \le 360^{\circ}$ ,  $0^{\circ} \le B \le 90^{\circ}$ . Use a sketch to determine the value of the following <u>without using a calculator</u>.

$$5.1.1 \cos 2A$$
 (3)

$$5.1.2 \sin{(A+B)}$$
 (3)

5.2 Simplify, without the use of a calculator:

$$\sin 20^{\circ} \cos 320^{\circ} + \cos (-20^{\circ}) \sin (400^{\circ})$$
 (3)

5.3 Prove the identity:

$$\frac{\cos^2(90^\circ + \theta)}{\cos(-\theta) + \sin(90^\circ - \theta)\cos\theta}) = \frac{1}{\cos\theta} - 1$$
 (5)

5.4 It is given that

$$p = \cos \alpha + \sin \alpha$$
$$q = \cos \alpha - \sin \alpha$$

deduce the following trigonometric ratios in terms of p and q.

$$5.4.1 \quad \cos 2\alpha$$
 (2)

$$5.4.2 \quad \frac{1+\sin 2\alpha}{\cos 2\alpha} \tag{5}$$

5.5 Determine the general solution of  $6\cos^2 x + \sin x - 5 = 0$ . (6)

[27]

In the diagram below, the graph of  $g(x) = \cos 2x$ , for  $x \in [-90^{\circ}; 120^{\circ}]$  is drawn.



- 6.1 Draw the graph of  $f(x) = \sin(x + 30^{\circ})$  for  $x \in [-90^{\circ}; 120^{\circ}]$  on the set of axes provided in the ANSWER BOOK. (3)
- 6.2 Determine the value(s) of  $x, x \in [-90^\circ; 120^\circ]$  for which both graphs are decreasing (2)
- 6.3 Consider  $h(x) = f(x + 60^{\circ})$ .

  Describe the transformation the graph of f to obtain the graph of h. (2)

#### **QUESTION 7**

A, B and C are three points in the same horizontal plane.

DA is a vertical cliff.

The angle of elevation of the top of the cliff from D is  $\theta$ .

If  $\hat{ABC} = \hat{ACB} = \alpha$  and the distance between B and C is k metres.

Prove that

$$AD = \frac{k \tan \theta}{2 \cos \alpha}$$



[6]

[7]

In the figure, TQSW is a cyclic quadrilateral with tangent PR touching the circle at Q. WQ bisects  $P\hat{W}R$ .  $\hat{Q}_4=x$ 



NSC

- 8.1 Name with reasons 5 other angles each equal to x. (5)
- 8.2 Prove that:

8.2.1 TS // PR 
$$(2)$$

$$8.2.2 \quad \widehat{Q}_3 = \widehat{P} \tag{3}$$

8.2.3 
$$\triangle$$
 TQS is an isosceles triangle (4)

8.2.4 
$$\hat{WQP} = \hat{T}_1$$
 (3) [17]

9.1 In the figure, TP and TS are tangents to the circle. R is a point on the circle and RS are drawn. Q is a point on PR such that TQP = TPS. SQ is drawn.



Prove that:

9.1.2 QPTS is a cyclic quadrilateral (3)

10

NSC

9.2 In the figure, LN is the diameter of the circle. KL is the tangent to the circle at L.



- 9.2.1 Prove that  $\triangle$  LPK ///  $\triangle$  NPL
- 9.2.2 Show that  $PL^2 = NP$ . PK (3)
- 9.2.3 Name another triangle which is similar to  $\triangle$  NPL (1)
- 9.2.4 Calculate the area of the circle if NP = 10 cm and PK = 6 cm (6)

[23]

(4)

#### **QUESTION 10**

In  $\triangle ADF$ ,  $DF \parallel CE$  and  $CF \parallel BE$ . If AB = 4 units and BC = 6 units, then calculate



10.1 the length of CD

10.2 the numerical value of

$$\frac{\text{area of } \Delta \text{FEC}}{\text{area of } \Delta \text{FAD}} \tag{4}$$

[7]

(3)

**TOTAL: 150** 

# Downloaded from Stanmorephysics.com

#### INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
  $A = P(1-ni)$   $A = P(1-i)^n$ 

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
  $S_n = \frac{n}{2} [2a + (n-1)d]$ 

$$T_n = \alpha r^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \quad r \neq 1$$

$$S_x = \frac{a}{1-r}$$
; -1 < r < 1

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
  $y - y_1 = m(x - x_1)$   $m = \frac{y_2 - y_1}{x_2 - x_1}$   $m = \tan \theta$ 

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In AABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \triangle ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum f_{\cdot} x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$



# Downloaded from Stanmorephysics.com



# education

Department:
Education
PROVINCE OF KWAZULU-NATAL

**GRADE 12** 

NATIONAL SENIOR CERTIFICATE

**MATHEMATICS P2** 

**ANSWER BOOK** 

**COMMON TEST** 

**JUNE 2019** 

**MARKS: 300** 

These answer book consist of 18 pages.

| 16 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 28                  | 29                             |
|----|----|----|----|----|----|----|----|---------------------|--------------------------------|
| 1  |    |    |    |    |    |    |    | Anna see an anna an | AND THE PROPERTY OF THE PARTY. |

|     | Solu | tion/( | Oplos:                                                                                                          | sing                         |    |    | THE STREET                             |    | ************************************** |    |    |            |    |    |    |                                         | Marks<br>Punte |
|-----|------|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------|----|----|----------------------------------------|----|----------------------------------------|----|----|------------|----|----|----|-----------------------------------------|----------------|
| 1.1 |      |        |                                                                                                                 |                              |    |    |                                        |    |                                        |    |    |            |    |    |    | *************************************** |                |
|     |      |        |                                                                                                                 |                              |    |    |                                        |    |                                        |    |    | 10,000,000 |    |    |    |                                         | (2)            |
| .2  |      |        | 100 to |                              |    |    | ······································ |    |                                        |    |    |            |    |    |    |                                         | (2)            |
| .3  |      |        |                                                                                                                 |                              |    |    |                                        |    |                                        |    |    |            |    |    |    |                                         |                |
| 1.4 | 15   | 16     | 17                                                                                                              | 18                           | 19 | 20 | 21                                     | Ž2 | 23                                     | 24 | 25 | 26         | 27 | 28 | 29 | 30                                      | (4)            |
| S   |      |        |                                                                                                                 |                              |    |    |                                        |    |                                        |    |    |            |    |    |    |                                         |                |
|     |      |        |                                                                                                                 | 17 Sept. 1 (18 sept. 1 - 18) |    |    |                                        |    |                                        |    |    |            |    |    |    |                                         |                |
|     | 1    |        |                                                                                                                 |                              |    |    |                                        |    |                                        |    |    |            |    |    |    |                                         | (3)            |

# Downloaded from Stannor ephrysics.com

#### QUESTION / VRAAG 2

| Age<br>Ouerdom  | Frequency<br>Frekwensie | Cumulative Frequency<br>Kumulatiewe frekwensie |
|-----------------|-------------------------|------------------------------------------------|
| $5 < x \le 15$  | 200                     | 200                                            |
| $15 < x \le 25$ | A                       | 450                                            |
| $25 < x \le 35$ | 20                      | 470                                            |
| $35 < x \le 45$ | 32                      | В                                              |
| $45 < x \le 55$ | 23                      | 525                                            |
| $55 < x \le 65$ | 300                     | 825                                            |
| $65 < x \le 75$ | 475                     | 1300                                           |





|     | Solution/Oplossing | Marks/<br>Punte |
|-----|--------------------|-----------------|
| 3.1 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (2)             |
| 3.2 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (2)             |
|     |                    |                 |

|     | Solution/Oplossing | Marks/<br>Punte |
|-----|--------------------|-----------------|
| 3.3 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (4)             |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | -               |
|     |                    |                 |
|     |                    | 1               |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
| 3.4 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (3)             |
|     |                    |                 |
|     |                    |                 |

|     | Solution/Oplossing | Marks,<br>Punte |
|-----|--------------------|-----------------|
| 3.5 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (3)             |
| 3.6 |                    |                 |
|     |                    |                 |
|     |                    |                 |
|     |                    | (4)             |
|     |                    |                 |
|     |                    |                 |
|     |                    | [18]            |



|       | Solution/Oplossing | Marks/ Punte |
|-------|--------------------|--------------|
| 4.1   |                    |              |
|       |                    |              |
|       |                    |              |
|       |                    | (2)          |
|       |                    |              |
| 4.2   |                    |              |
|       |                    |              |
|       |                    | (2)          |
| 4.3.1 |                    |              |
|       |                    |              |
|       |                    | (2)          |
|       |                    | *            |

NSC-Answerbook

|            | Solution/Oplossing | Marks/<br>Punte |
|------------|--------------------|-----------------|
| 4.3.2      |                    |                 |
|            |                    |                 |
|            |                    | (2)             |
|            |                    |                 |
|            |                    |                 |
| 4.4.1      |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    | (2)             |
|            |                    | (2)             |
|            |                    |                 |
| 4.4.2      |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    | (2)             |
| 4.5.1      |                    |                 |
| 3.555.5.50 |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    | (4)             |
|            |                    |                 |
|            |                    |                 |

Solution/Oplossing Marks/ Punte 4.5.2 (2)4.5.3 (4) [22]

|       | Solution/Oplossing | Marks/ Punte   |
|-------|--------------------|----------------|
| 5.1.1 |                    |                |
|       |                    |                |
|       |                    | - 100-00-00-00 |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    | (3)            |
| 5.1.2 |                    | (3)            |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    | (3)            |
|       |                    |                |
| 5.2   |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    |                |
|       |                    | (3)            |

|                                        | Solution/Oplossing | Marks/<br>Punte |
|----------------------------------------|--------------------|-----------------|
| 5.3                                    |                    | Punte           |
|                                        |                    | -               |
|                                        |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
| ************************************** |                    |                 |
| 541                                    |                    | (5)             |
| 5.4.1                                  |                    |                 |
|                                        |                    |                 |
|                                        |                    | (2)             |
| 5.4.2                                  |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
|                                        |                    | (5)             |
| 5.5                                    |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
| ŀ                                      |                    | -               |
| -                                      |                    |                 |
| -                                      |                    |                 |
|                                        |                    |                 |
|                                        |                    |                 |
|                                        |                    | (6)             |
|                                        |                    | [27]            |



| [6] |
|-----|
|-----|

Copyright Reserved



|       | Solution/Oplossing | Marks/ Punte |
|-------|--------------------|--------------|
| 8.1   |                    |              |
|       |                    |              |
|       |                    | (5)          |
| 8.2.1 |                    |              |
|       |                    | (2)          |
| 8.2.2 |                    |              |
|       |                    | (3)          |
| 8.2.3 |                    |              |
|       |                    |              |
|       |                    | (4)          |
| 8.2.4 |                    | (4)          |
|       |                    |              |
|       |                    | (3)<br>[17]  |



|       | Solution/Oplossing | Marks/ Punte |
|-------|--------------------|--------------|
| 9.1.1 |                    |              |
|       |                    | _            |
|       |                    |              |
|       |                    |              |
|       |                    |              |
| 0.1.0 |                    | (3)          |
| 9.1.2 |                    |              |
|       |                    | _            |
|       |                    |              |
|       |                    |              |
|       |                    |              |
| 9.1.3 |                    | (3)          |
| 311.0 |                    | 77=2         |
|       |                    |              |
|       |                    |              |
|       |                    | (3)          |

Copyright Reserved



|       | Solution/Oplossing | Marks/ Punte |
|-------|--------------------|--------------|
| 9.2.1 |                    |              |
|       |                    |              |
|       |                    | (4)          |
| 9.2.2 |                    |              |
|       |                    | (3)          |
|       |                    |              |
| 9.2.3 |                    | (1)          |
|       |                    |              |

|       | Solution/Oplossing | Marks,<br>Punte |
|-------|--------------------|-----------------|
| 9.2.4 |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    |                 |
|       |                    | (6)             |
|       |                    | [23]            |



| 10.1 | Solution/Oplossing | Marks/<br>Punte |
|------|--------------------|-----------------|
|      |                    |                 |
|      |                    |                 |
|      |                    |                 |
|      |                    | (3)             |
| 10.2 |                    |                 |
| 10.2 |                    |                 |
|      |                    |                 |
|      |                    |                 |
|      |                    |                 |
|      |                    |                 |
|      |                    | (4)             |
|      |                    |                 |
|      |                    | [7]             |
|      |                    |                 |

**TOTAL MARKS: 150** 

# Downloaded from Stanmorephysics.com



#### **MATHEMATICS P2**

#### **MARKING GUIDELINE**

**COMMON TEST** 

**JUNE 2019** 

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MARKS: 150** 

N.B. This marking guidelines consists of 14 pages.

| 1.1 | $\overline{x} = \frac{220}{10} = 22$   |                            | ✓A 220                                |          |
|-----|----------------------------------------|----------------------------|---------------------------------------|----------|
|     | $x - \frac{10}{10} - 22$               |                            | ✓ CA answer                           | (2)      |
|     |                                        |                            | Answer only full marks                |          |
| 1.2 | $\sigma = 3,95$                        |                            | ✓✓ AA answer                          | (2)      |
|     |                                        |                            | If formula is used 1CA mark for       |          |
|     |                                        |                            | substitution and 1CA mark for         |          |
|     |                                        |                            | answer.                               |          |
| 1.3 |                                        |                            |                                       |          |
|     | Г                                      |                            |                                       |          |
|     |                                        |                            |                                       |          |
|     | •                                      |                            | •                                     |          |
|     | L                                      |                            |                                       |          |
|     |                                        |                            |                                       |          |
| 15  | 16 17 18 19                            | 20 21 22 23 24             | 25 26 27 28 29 30                     | <b>→</b> |
| 10  | 10 17 10 13                            | 20 21 22 20 24             | 20 20 21 20 23 30                     |          |
|     |                                        |                            | ✓ A minimum & maximum value           |          |
|     |                                        |                            | ✓ A quartile 1 value                  |          |
|     |                                        |                            | ✓ A quartile i value ✓ A median value |          |
|     |                                        |                            | ✓ A quartile 3 value                  |          |
|     |                                        |                            | A quartile 3 value                    |          |
|     |                                        |                            | If No Diagram No marks (4)            |          |
| 1.4 | $(\bar{x} - \sigma; \bar{x} + \sigma)$ |                            | , ,                                   |          |
|     | (x-6; x+6)<br>(22-3.95; 22+3.95)       |                            |                                       |          |
|     |                                        |                            | ✓CA 18,05                             |          |
|     | (18,05; 25, 95)<br>6 runners           |                            | ✓ CA 25,95                            |          |
|     | O Tuilliois                            | (answer only – full marks) | ✓ CA answer                           | (3)      |
|     |                                        | (answer only – run marks)  |                                       | [11]     |
| 1   |                                        |                            |                                       |          |

| 2.1 | A = 250<br>B = 502                                                                                                            | ✓ (A)A<br>✓ (A) B                                                            | (2)  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------|
| 2.2 | $\bar{x} = \frac{2000 + 5000 + 600 + 1280 + 1150 + 18000 + 33250}{1300}$                                                      | ✓CA sum                                                                      |      |
|     | $\bar{x} = \frac{61280}{1300}$ $\bar{x} = 47,14$                                                                              | ✓CA 61280<br>✓CA                                                             |      |
| 2.3 | (answer only – full marks) $65 < x \le 75$                                                                                    | answer  ✓✓AA  answer                                                         | (3)  |
| 2.4 | AGES OF CONSUMERS  1400 1200 1000 800 400 200 5 15 25 35 45 55 65 75 AGE                                                      | ✓CA upper limits ✓CA grounding (5; 0) ✓CA joining points with a smooth curve | (3)  |
| 2.5 | Not a normal distribution. Highest frequency is found between the ages 55 to 75. Mean < median, therefore skewed to the left. | ✓A No<br>✓A Reason                                                           | (2)  |
|     | ,                                                                                                                             | -1                                                                           | [12] |

| 3.1 | BC = $\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$                                               | ✓ A substitution                                           |
|-----|-------------------------------------------------------------------------------------------|------------------------------------------------------------|
|     | $BC = \sqrt{(x^2 - x^2)^2 + (y^2 - y^2)^2}$                                               |                                                            |
|     | $= \sqrt{(-2-1)^2 + (-2-4)^2}$                                                            |                                                            |
|     | $= \sqrt{9+36}$                                                                           |                                                            |
|     | $=$ $\sqrt{45}$                                                                           | ✓CA answer (2)                                             |
|     | $= 3\sqrt{5}$                                                                             |                                                            |
| 3.2 | $M\left(\frac{1-2}{2}; \frac{4-2}{2}\right)$                                              | $\checkmark$ A $\frac{-1}{2}$                              |
|     | $M\left(-\frac{1}{2}; 1\right)$                                                           | ✓A 1 (2)                                                   |
| 3.3 | $m_{AB} = \frac{-2-4}{-2-1} = \frac{-6}{-3}$                                              |                                                            |
|     | = 2                                                                                       | $\checkmark$ A M $_{AB}$                                   |
|     | $m_{MD} = -\frac{1}{2}$ (DM $\perp$ AB)                                                   | ✓CA gradient of MD                                         |
|     | y = mx + c                                                                                |                                                            |
|     | $1 = -\frac{1}{2}\left(-\frac{1}{2}\right) + c$                                           | $\checkmark$ CA subst. $\left(-\frac{1}{2}; 1\right)$ into |
|     | $c = 1 - \frac{1}{4}$                                                                     | eq.                                                        |
|     | $=\frac{3}{4}$                                                                            |                                                            |
|     | $y = -\frac{1}{2}x + \frac{3}{4}$                                                         |                                                            |
|     | $\left  \begin{array}{ccc} y - \overline{2}^{\lambda} + \overline{4} \end{array} \right $ | ✓CA answer (4)                                             |

| 3.4 | E is the midpoint since ME BC.                                                    | ✓ A S/R                                            |
|-----|-----------------------------------------------------------------------------------|----------------------------------------------------|
|     | $E\left(\frac{1+4}{2}; \frac{4+1}{2}\right)$                                      | ✓A substitution                                    |
|     | $= E\left(\frac{5}{2}; \frac{5}{2}\right)$                                        | ✓CA answer (provided coordinates are positive) (3) |
| 3.5 | $m_{BE} = \frac{-2 - \frac{5}{2}}{-2 - \frac{5}{2}}$                              |                                                    |
|     | $-2 - \frac{5}{2}$ $m_{BE} = 1$                                                   | ✓CA $m_{BE}$ (must be positive)                    |
|     | $y - y_1 = m(x - x_1)$ OR $y = mx + c$<br>y - (-2) = 1(x - (-2)) $-2 = 1(-2) + c$ | ✓CA substitution                                   |
|     | y + 2 = x + 2 $y = x$ $0 = c$ $y = x$                                             | ✓CA answer (must be positive) (3)                  |
| 3.6 | $m_{BC} = \frac{-2-1}{-2-4} = \frac{1}{2}$                                        | ✓ A Substitution<br>✓ CA $m_{BC} = \frac{1}{2}$    |
|     | $m_{BC} = \tan \theta = \frac{1}{2}$                                              | ✓CA $\tan \theta = \frac{1}{2}$ ✓CA answer         |
|     | $\theta = 26,57^{\circ}$                                                          | ✓CA answer (4)                                     |
|     | <u> </u>                                                                          | [18]                                               |
|     | QUESTION 4                                                                        |                                                    |
| 4.1 | $AQ = \sqrt{(-6-2)^2 + (-7-(-1))^2}$                                              | ✓A subst. into dist. formula                       |
|     | $AQ = \sqrt{(-8)^2 + (-6)^2}$ $AQ = \sqrt{64 + 36}$                               |                                                    |
|     | $AQ = \sqrt{100}$                                                                 |                                                    |
|     | $\therefore AQ = 10$                                                              | ✓CA answer (2)                                     |
|     |                                                                                   |                                                    |

| 1.5   |                                                                                                     |                                                              |
|-------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 4.2   | $(x-a)^{2} + (y-b)^{2} = r^{2}$ $(x-2)^{2} + (y+1)^{2} = 100$                                       | $\checkmark$ A $(x-2)^2 + (y+1)^2$                           |
|       | $(x-2)^2 + (y+1)^2 = 100$                                                                           | ✓CA 100 (2)                                                  |
| 4.3.1 | $m_{AQ} = \frac{-7+1}{-6-2} = \frac{3}{4}$                                                          | $\checkmark$ A $\frac{3}{4}$                                 |
|       | $\therefore m_{QP} = -\frac{4}{3} \qquad rad. \perp tan$                                            | $\checkmark A \frac{3}{4}$ $\checkmark CA - \frac{4}{3}$ (2) |
| 4.3.2 | $m_{AR} = \frac{-7+1}{10-2} = -\frac{3}{4}$ $\therefore m_{PR} = \frac{4}{3} \qquad rad. \perp tan$ | $\checkmark A \frac{-3}{4}$ $\checkmark CA \frac{4}{3}$      |
|       | $\therefore m_{PR} = \frac{4}{3} \qquad rad. \perp tan$                                             | $\checkmark$ CA $\frac{4}{3}$ (2)                            |
| 4.4.1 | $m_{QP} = -\frac{4}{3}$                                                                             |                                                              |
|       | $y - y_1 = m(x - x_1)$                                                                              |                                                              |
|       | $y + 7 = -\frac{4}{3}(x+6)$                                                                         | ✓CA substitution                                             |
|       | $y = -\frac{4}{3}x - 15$                                                                            | ✓CA answer (2)                                               |
| 4.4.2 | $m_{PR} = \frac{4}{3}$                                                                              |                                                              |
|       | $y - y_1 = m(x - x_1)$                                                                              |                                                              |
|       | $y + 7 = \frac{4}{3}(x - 10)$                                                                       | ✓CA substitution                                             |
|       | $y = \frac{4x}{3} - \frac{40}{3} - 7$                                                               |                                                              |
|       | $= \frac{4}{3}x - \frac{61}{3}$                                                                     | ✓CA answer (2)                                               |
|       |                                                                                                     |                                                              |

| 4.5.1 | $\frac{4}{3}x - \frac{61}{3} = -\frac{4}{3}x - 15$       | ✓CA Equating                                        |
|-------|----------------------------------------------------------|-----------------------------------------------------|
|       | $\frac{8}{3}x = \frac{16}{3}$                            |                                                     |
|       | $x = 2$ $y = -\frac{53}{3}$                              | $\checkmark$ CA $x$ value $\checkmark$ CA $y$ value |
|       | $P(2; = -\frac{53}{3})$                                  | ✓CA both co-ordinates                               |
|       | OR                                                       |                                                     |
|       | The $x$ – co-ordinate of P is 2 (ARPQ is a kite)         | $\checkmark A x = 2$                                |
|       | Subst $x=2 \text{ in } y = -\frac{4}{3} x - 15$          |                                                     |
|       | $y = -\frac{4}{3}(2) - 15$                               | ✓CA substitution                                    |
|       | $=-\frac{8}{3}-15$                                       |                                                     |
|       | $= \frac{-8-45}{3}$ $= \frac{-53}{3}$                    | ✓CA y value                                         |
|       | $P\left(2;-\frac{53}{3}\right)$                          | ✓CA both co-ordinates (4)                           |
| 4.5.2 | In ΔSPR                                                  |                                                     |
|       | $\alpha = \hat{P} + \beta$ (ext $\angle of \Delta SPR$ ) | ✓A S/R                                              |
|       | $\therefore \hat{P} = \alpha - \beta$                    | $\checkmark A \hat{P} = \alpha - \beta \tag{2}$     |

|       |                                                                                                                                                                                                     | [22]                               |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       |                                                                                                                                                                                                     |                                    |
|       |                                                                                                                                                                                                     |                                    |
|       | <del>-</del> 7                                                                                                                                                                                      | (1)                                |
|       | $\frac{1}{\cos(126.87 - 53.13)} = 3,42857$ $\approx \frac{24}{7}$                                                                                                                                   | ✓ A simplification  ✓ A Answer (4) |
|       | $tan\beta = \frac{4}{3}  \therefore \beta = 53.13^{\circ}$ $tan\alpha = -\frac{4}{3}  \therefore \alpha = 126,87^{\circ}$ $tan(\alpha - \beta) = \frac{\sin(126.87 - 53.13)}{\cos(126.87 - 53.13)}$ | ✓ A answer  ✓ A simplification     |
|       | OR $tan\beta = \frac{4}{3}  \therefore \beta = 53.13^{\circ}$                                                                                                                                       | ✓A answer                          |
|       | $=\frac{24}{7}$                                                                                                                                                                                     |                                    |
|       | $=\frac{24}{25}\times\frac{25}{7}$                                                                                                                                                                  |                                    |
|       | $=\frac{\frac{12}{25} + \frac{12}{25}}{\frac{-9}{25} + \frac{16}{25}}$                                                                                                                              | ✓A Simplification                  |
|       | $= \frac{\binom{4}{5}\binom{3}{5} - \left(-\frac{3}{5}\right)\binom{4}{5}}{\left(-\frac{3}{5}\right)\binom{3}{5} + \left(\frac{4}{5}\right)\binom{4}{5}}$                                           | ✓A numerator ✓A denominator        |
|       | $= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta}$                                                                                         | ✓A expansion                       |
| 4.5.3 | $\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)}$                                                                                                                          |                                    |
|       |                                                                                                                                                                                                     |                                    |



| 5.3   | $\cos^2(90^\circ + \theta)$                                                                                     |                                                        |      |
|-------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|
|       | $\frac{1}{\cos(-\theta) + \sin(90^{\circ} - \theta)\cos\theta}$                                                 |                                                        |      |
|       | $=$ $\sin^2 \theta$                                                                                             | ✓ A numerator                                          |      |
|       | $-\frac{1}{\cos\theta+\cos^2\theta}$                                                                            | ✓ A denominator                                        |      |
|       | $\sin^2 \theta$                                                                                                 | ✓ A common factor                                      |      |
|       | $=\frac{1}{\cos\theta\ (1+\cos\theta)}$                                                                         | ✓ A difference                                         |      |
|       | $=\frac{1-\cos^2\theta}{}$                                                                                      | of squares                                             |      |
|       | $=\frac{1}{\cos\theta (1+\cos\theta)}$                                                                          |                                                        |      |
|       |                                                                                                                 | √A                                                     |      |
|       | $=\frac{1-\cos\theta}{}$                                                                                        | simplification                                         |      |
|       | $={\cos \theta}$                                                                                                | _                                                      | (5)  |
|       |                                                                                                                 |                                                        |      |
|       | 1 ,                                                                                                             |                                                        |      |
|       | $=\frac{1}{\cos\theta}-1$                                                                                       |                                                        |      |
|       | = RHS                                                                                                           |                                                        |      |
|       |                                                                                                                 |                                                        |      |
| 5.4.1 | $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$                                                                  |                                                        |      |
|       | $= (\cos \alpha + \sin \alpha)(\cos \alpha - \sin \alpha)$                                                      | ✓ A expansion                                          |      |
|       | = p.q                                                                                                           | ✓ A answer                                             | (2)  |
| 5.4.2 | $1 + \sin 2 \alpha$                                                                                             |                                                        |      |
|       | $\frac{1+\sin 2\alpha}{\cos 2\alpha}$                                                                           |                                                        |      |
|       | $\sin^2\alpha + 2\sin\alpha\cos\alpha + \cos^2\alpha$                                                           | ( A                                                    |      |
|       | $=\frac{\sin^2 \alpha + 2 \sin^2 \alpha + \cos^2 \alpha}{\cos^2 \alpha - \sin^2 \alpha}$                        | ✓ A numerator ✓ A denominator                          |      |
|       | $\left[ \sin \alpha + \cos \alpha \right]^2$                                                                    | ✓ A factorise                                          |      |
|       | $= \frac{(\sin \alpha + \cos \alpha)}{(\cos \alpha - \sin \alpha)(\cos \alpha + \sin \alpha)}$                  | ✓ A factorise                                          |      |
|       |                                                                                                                 | ✓CA answer                                             | (5)  |
|       | $=\frac{p}{q}$                                                                                                  |                                                        |      |
| 5.5   | $6\cos^2 x + \sin x - 5 = 0$                                                                                    |                                                        |      |
|       | $6(1-\sin^2 x) + \sin x - 5 = 0$                                                                                | ✓ A identity                                           |      |
|       | $6 - 6\sin^2 x + \sin x - 5 = 0$                                                                                |                                                        |      |
|       | $-6\sin^2 x + \sin x + 1 = 0$                                                                                   |                                                        |      |
|       | $(3\sin x + 1)(-2\sin x + 1) = 0$                                                                               | ✓CA factors                                            |      |
|       | $\sin x = -\frac{1}{3};  \sin x = \frac{1}{2}$                                                                  | ✓ CA both ratios                                       |      |
|       | $x = 199,47^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $OR$ $x = 30^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$  | $\checkmark$ A $k \in \mathbb{Z}$ $\checkmark$ CA both |      |
|       | $x = 340,53^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $OR$ $x = 150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ | solutions of                                           |      |
|       |                                                                                                                 | $\sin x = -\frac{1}{3}$                                |      |
|       |                                                                                                                 | ✓CA both                                               |      |
|       |                                                                                                                 | solutions of                                           | (6)  |
|       |                                                                                                                 | $\sin x = \frac{1}{2}$                                 |      |
|       |                                                                                                                 |                                                        | [27] |
|       |                                                                                                                 |                                                        | [27] |



#### **QUESTION 7**



| 8.1   | $\hat{Q}_4 = \hat{W}_2 = x$ (tan chord theorem)                                                                                                | A (C/D            |      |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
|       | $\hat{W}_2 = \hat{W}_1 = x \dots \text{ (WQ bisects PWR.)}$                                                                                    | A√S/R             |      |
|       | $\hat{Q}_1 = \hat{W}_1 = x \dots \text{ (tan-chord theorem)}$                                                                                  | A√S/R             |      |
|       | $\hat{T}_2 = \hat{W}_2 = x \dots (\angle s \text{ in same segment})$                                                                           | A√S/R<br>A√S/R    |      |
|       | $\hat{S}_2 = \hat{W_1} = x \dots \angle s$ in same segment)                                                                                    | A√S/R             | (5)  |
| 8.2.1 | $\widehat{T}_2 = \widehat{Q}_1 = x$<br>$\therefore$ TS // PR (alternate $\angle$ s equal)                                                      | A√S<br>A√R        | (2)  |
| 8.2.2 | $\hat{T}_3 = \hat{P} \dots \text{ (corresponding } \angle s \text{ ; TS//PR)}$                                                                 | AA√S√R            |      |
|       | $\hat{T}_3 = \hat{Q}_3 \dots (\angle s \text{ in same segment})$                                                                               | A√S/R             |      |
|       | $\therefore \hat{\mathbf{P}} = \hat{\mathbf{Q}}_3$                                                                                             |                   | (3)  |
| 8.2.3 | In $\triangle$ TQS $\hat{T}_2 = x$                                                                                                             | A√S               |      |
|       | $\hat{S}_2 = x$ $\therefore \hat{T}_2 = \hat{S}_2 = x$ $\therefore \Delta \text{ TQS isosceles } \dots (\angle \text{s opposite equal sides})$ | A√S<br>A√S<br>A√R | (4)  |
| 8.2.4 | $\widehat{T}_1 = \widehat{WSQ} \text{ (tan - chord theorem)}$ $\widehat{T}_1 = \widehat{WSQ} \text{ (ext } \angle \text{ of cyclic quad)}$     | AA√S√R            |      |
|       | 1 of (ent Z or eyene quae)                                                                                                                     | A√S/R             | (3)  |
|       |                                                                                                                                                |                   | [17] |

|       | ^ ^                                                                                                                                                                                |                         | 1   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|
| 9.1.1 | $\widehat{P}_1 = \widehat{Q}_1$ given                                                                                                                                              | AA√S√R                  |     |
|       | $\widehat{P}_1 = \widehat{R}$ tan-chord theorem $\widehat{Q}_1 = \widehat{R}$                                                                                                      | AAVSVK                  |     |
|       | $\therefore Q_1 = R$ $\therefore TQ \parallel SR (corr \angle^s are equal)$                                                                                                        | A√R                     | (3) |
|       | IQ    SK (COII Z are equal)                                                                                                                                                        |                         | (-) |
| 9.1.2 | $\widehat{P}_1 = \widehat{Q}_1$ given                                                                                                                                              |                         |     |
|       | TS = TP tan from same point                                                                                                                                                        | A√S/R                   |     |
|       | $\widehat{P}_1 = \widehat{S}_1$ equal $\angle^s$ opp equal sides                                                                                                                   | A√S/R                   |     |
|       | $\therefore \widehat{Q}_1 = \widehat{S}_1$                                                                                                                                         | ) . (D                  |     |
|       | ∴QPTS is a cyclic quad converse equal $\angle$ <sup>s</sup> subtended by same                                                                                                      | A√R                     | (3) |
| 0.1.0 | chord                                                                                                                                                                              |                         | (3) |
| 9.1.3 | QPTS is a cyclic quad                                                                                                                                                              | AA√S√R                  |     |
|       | $ \therefore \widehat{P}_1 = \widehat{Q}_2 \qquad \qquad \angle^s \text{ in same } \bigcirc \text{ segm} \\ \text{but } \widehat{P}_1 = \widehat{Q}_1 \qquad \qquad \text{given} $ | AAVSVK                  |     |
|       | but $P_1 = Q_1$ given $ \therefore \hat{Q}_1 = \hat{Q}_2 $                                                                                                                         | A√S                     |     |
|       | $∴ Q_1 = Q_2$ $∴ TQ bisect SQP$                                                                                                                                                    |                         | (3) |
| 9.2.1 | In $\triangle$ LPK and $\triangle$ NPL                                                                                                                                             |                         |     |
| 7.2.1 | $K\hat{L}P = L\hat{N}P$ tan chord theorem                                                                                                                                          | AA√S√R                  |     |
|       | $\hat{P}_2 = 90^{\circ} \dots \dots $ $\angle \text{ in semi } \bigcirc$                                                                                                           | A√S/R                   |     |
|       | $\widehat{P}_1 = \widehat{P}_2 \dots \text{both} = 90^\circ$                                                                                                                       |                         |     |
|       | $P\widehat{K}L = N\widehat{L}P \dots$ remaining angle                                                                                                                              | ) . (D                  |     |
|       | ∴ ΔLPK///ΔNPL∠∠∠                                                                                                                                                                   | A√R                     | (4) |
| 022   | PL KL PK A L DV (// A N DV                                                                                                                                                         | AA√S√R                  | (4) |
| 7.2.2 | $\frac{PL}{NP} = \frac{KL}{NL} = \frac{PK}{PL} \dots \Delta LPK /// \Delta NPL$ $\frac{PL}{NP} = \frac{PK}{PL} \dots \Delta LPK /// \Delta NPL$                                    | AM' B' K                |     |
|       | $\frac{PL}{NP} = \frac{PK}{PL} \dots \Delta LPK ///\Delta NPL$                                                                                                                     | A√ proportionality      |     |
|       | $\therefore PL^2 = NP. PK$                                                                                                                                                         |                         |     |
| 0.00  | . 377                                                                                                                                                                              |                         | (3) |
|       | ΔNLK                                                                                                                                                                               | A√ answer               | (1) |
| 9.2.4 | ANTI IZ / / / ANIDI                                                                                                                                                                |                         |     |
|       | ΔNLK///ΔNPL<br>KN I.N                                                                                                                                                              |                         |     |
|       | $\therefore \frac{KN}{LN} = \frac{LN}{NP} [///\Delta's]$                                                                                                                           | A√ S/R                  |     |
|       | $LN^2 = KN.NP$                                                                                                                                                                     | A ✓ Substitution        |     |
|       | $= 16 \times 10$                                                                                                                                                                   |                         |     |
|       | = 160                                                                                                                                                                              | 45                      |     |
|       | $LN = \sqrt{160}$                                                                                                                                                                  | ✓CA NL value            |     |
|       | Radius = $\frac{1}{2}\sqrt{160}$                                                                                                                                                   | ✓CA radius =            |     |
|       | Area of Circle = $\pi r^2$                                                                                                                                                         | $\frac{1}{2}\sqrt{160}$ |     |
|       | $=\pi(\frac{1}{2}\sqrt{160})^2$                                                                                                                                                    |                         |     |
|       | =125.66cm <sup>2</sup>                                                                                                                                                             |                         |     |
|       |                                                                                                                                                                                    |                         |     |
|       | OB                                                                                                                                                                                 | ✓CA Substitution        |     |
|       | OR                                                                                                                                                                                 | ✓CA Answer              | (6) |
|       |                                                                                                                                                                                    |                         |     |
|       |                                                                                                                                                                                    |                         |     |
|       |                                                                                                                                                                                    |                         |     |

| Mathematics P2              | NSC-Marking Guideling                                                                            | e                                                   |
|-----------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| From Questi                 | on No. 9.2.2: $PL^2 = NP.PK$<br>= 10 cm x 6 cm<br>= 60 cm <sup>2</sup>                           |                                                     |
| =                           | PL <sup>2</sup> + PN <sup>2</sup> Pythagoras<br>$60 + 100$ ( $\Delta$ LPN)<br>$160 \text{ cm}^2$ | $\checkmark$ A PL <sup>2</sup> = 60 cm <sup>2</sup> |
| $\therefore NL = \sqrt{16}$ | $\overline{60}cm$                                                                                | ✓A Pythagoras                                       |
|                             | $\text{liameter } = \frac{1}{2} \sqrt{160} \ cm$                                                 | ✓CA NL value<br>✓CA radius =                        |
| Area of circl               | $e = \pi r^{2}$ $= \pi \times \left(\frac{1}{2}\sqrt{160}\right)^{2} cm^{2}$                     | $\frac{1}{2}\sqrt{160}$                             |
|                             | $= 125,66 \text{ cm}^2 \text{ OR } 40\pi  cm^2$                                                  | ✓CA substitution                                    |
|                             |                                                                                                  | ✓CA answer                                          |
|                             |                                                                                                  | [23]                                                |

| 10.1 | $\frac{AE}{EF} = \frac{4}{6}  \dots  \text{prop theorem ; EB//FC}$ $\frac{AE}{EF} = \frac{AC}{CD}  \dots  \text{prop theorem; EC//FD}$ $\frac{4}{6} = \frac{10}{CD}$                                                   | A√ S/R<br>A√ S/R |     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|
|      | CD = 15 units                                                                                                                                                                                                          | ✓CA answer       | (3) |
| 10.2 | $\frac{\Delta \text{FEC}}{\Delta \text{CFA}} = \frac{3}{5}$ same height                                                                                                                                                | A√ S/R           |     |
|      | $\frac{\text{Area }\Delta\text{CFA}}{\text{Area }\Delta\text{FAD}} = \frac{10}{25} = \frac{2}{5}$ same height                                                                                                          | A√ S/R           |     |
|      | $\frac{\text{Area }\Delta \text{FEC}}{\text{Area }\Delta \text{FAD}} = \frac{\text{Area }\Delta \text{FEC}}{\text{Area }\Delta \text{CFA}} \times \frac{\text{Area }\Delta \text{CFA}}{\text{Area }\Delta \text{FAD}}$ |                  |     |
|      | $= \frac{3}{5} \times \frac{2}{5}$ $= \frac{6}{25}$                                                                                                                                                                    | ✓CA simplify     |     |
|      | $=\frac{6}{25}$                                                                                                                                                                                                        | ✓CA answer       | (4) |
|      |                                                                                                                                                                                                                        |                  | [7] |

**TOTAL MARKS: 150**