

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

JUNE CONTROL TEST

MARKING GUIDELINE

MARKS: 150

TIME: 3 hours

This marking guideline consists of 11 pages.

Copyright Reserved Please Turn Over

1.1.1	x = 4 or $x = 10$	A✓ 4 A✓ 10	(2)
1.1.2	$x^2 - 8x - 6 = 0$	A√standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(-6)}}{2(1)}$ $x = 8,69 or x = -0,69$	CA✓ substitution in correct formula CACA✓ answers (penalize 1 mark if rounding off is incorrect-once for whole paper)	(4)
1.1.3	$3^{x+2} + 3^{2-x} = 82$		
	$9.3^{x} + \frac{9}{3^{x}} = 82$		
	$9.3^{2x} - 82.3^x + 9 = 0$	A√standard form	
	$(9.3^x - 1)(3^x - 9) = 0$	CA \checkmark factors CA \checkmark 3 ^x = $\frac{1}{9}$ and 3 ^x = 9	
	$(9.3^{x} - 1)(3^{x} - 9) = 0$ $3^{x} = \frac{1}{9} = 3^{-2} \qquad or \qquad 3^{x} = 9 = 3^{2}$	$CA^{*}S = \frac{1}{9}$ and $S = 9$	
	$3^x = 3^{-2}$ or $3^x = 3^2$	CA✓Exponential forms	
	$3^{x} = 3^{-2} \qquad or \qquad 3^{x} = 3^{2}$ $x = -2 \qquad or \qquad x = 2$	CA✓answers	(5)
1.1.4	$\sqrt{7x+2} + 2x = 0$		
	$\sqrt{7x+2} = -2x$		
	$\sqrt{7x + 2} = -2x$ $7x + 2 = 4x^{2}$ $4x^{2} - 7x - 2 = 0$ $(4x + 1)(x - 2) = 0$	A✓Isolating surd and squaring	
	$4x^2 - 7x - 2 = 0$	CA√standard form	
	(4x+1)(x-2) = 0	CA✓factors	
	$x = -\frac{1}{4} \qquad or x = 2$ n/a	$CA \checkmark x$ – values and rejecting	(4)

	NSC Memo		
1.2	$3^{y-x} = 9 \qquad \to (1)$		
	$x^2 + 2xy - 4 = 0 \qquad \rightarrow (2)$		
	From (1):		
	$3^{y-x} = 3^2$ $\therefore y = x + 2 \rightarrow (3)$	A \checkmark making x/y the subject	
	Substituting (3) into (2):	CA✓substitution into equation (2)	
	$x^2 + 2x(x+2) - 4 = 0$	CA* substitution into equation (2)	
	$x^2 + 2x^2 + 4x - 4 = 0$		
	$3x^2 + 4x - 4 = 0$	CA√standard form	
	(3x - 2)(x + 2) = 0	CA√factors	
	$x = \frac{2}{3} \qquad or \qquad x = -2$	$CA \checkmark y/x$ values	
	$y = 2\frac{2}{3} \qquad or \qquad y = 0$	$CA \checkmark x/y$ values	(6)
	$y = 2\frac{\pi}{3}$ or $y = 0$		(6)
1.3	$x(x-3)-10\geq 0$	A√standard form	
	$x^2 - 3x - 10 \ge 0$	Av standard form	
	$(x+2)(x-5) \ge 0$	CA√factors	(4)
	$x \le -2$ or $x \ge 5$	CACA✓✓ answer	(4)
	OR	OR	
	$x(x-3) - 10 \ge 0$	A√standard form	
	$x^2 - 3x - 10 \ge 0$	CA√factors	
	$(x+2)(x-5) \ge 0$		
	+ - +	A✓ graph with signs and critical values	
	$x \le -2$ or $x \ge 5$	CA✓ answer	(4)
			[25]
			<u></u>

2.1	32 ; 43	A√answers	(1)
2.2	8 11 16 23		
	1D 3 5 7		
	2D 2 2		
	$2a = 2 \qquad \therefore a = 1$ $3a + b = 3 \qquad \therefore b = 0$ $a + b + c = 8 \qquad \therefore c = 7$ $T_n = n^2 + 7$	$A \checkmark a$ value $CA \checkmark b$ value $CA \checkmark c$ value $CA \checkmark answer$	(4)
2.2	$T_n = n^2 + 7 = 2311$ $n^2 = 2311 - 7 = 2304$	A \checkmark equating n^{th} term to 2311 CA \checkmark making n^2 the subject	
	$n = \sqrt{2304} = 48$	CA✓ answer	(3) [8]

3.1	4n - 1 = 671 4n = 672 n = 168	CA \checkmark equating n^{th} term to 671 \checkmark answer	(2)
3.2	Pattern: 3; 15; 27; 39;; 663 12n - 9 = 663 n = 56 $S_{56} = \frac{56}{2}[3 + 663] = 18648$ $S_{168} = \frac{168}{2}[3 + 671] = 56616$ Terms not divisible by 3	A \checkmark setting up and equating A \checkmark equating n^{th} term to 663 CA \checkmark n – value CA \checkmark 18648 CA \checkmark 56616	
	= 56616 – 18648 = 37968	CA✓answer	(6)
			[8]

$\frac{1}{2}r^4 = 40.5$	$A\sqrt{\frac{1}{2}}r^4 = 40,5$	
$r^4 = 81 = 3^4$	$CA \checkmark r^4 = 3^4$	
r = 3	CA✓answer	(2)
		(3)
$\frac{1}{2}(3)^{n-1} = \frac{59049}{2}$	A√equating 11th term to 59049	
$(3)^{n-1} = 59040$	2	
$3^{n-1} = 3^{10}$	CA√exponential form	
n = 11	CA√answer	(3)
AS: 8; (8+d); (8+2d);	A√ forming both sequences	
GS: $8 ; 8r ; 8r^2;$		
$T_5 = 8r^4 = 2048$	$A\checkmark8r^4=2048$	
$r^4 = 256 = 4^4$	$CA \checkmark r^4 = 256$	
r = 4	CA✓r – value	
Sum = 8 + 12 + 16 = 36	CA√answer	(5)
		[11]
$\frac{1}{2}$ (1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (1)	$\frac{1}{12} = 81 = 3^{4}$ $\frac{1}{12} = 3$ $\frac{1}{12} = \frac{1}{12}$ 1	CA $\checkmark r^4 = 3^4$ CA $\checkmark r^4 = 3^4$ CA $\checkmark answer$ $\frac{1}{2}(3)^{n-1} = \frac{59049}{2}$ A $\checkmark equating nth term to \frac{59049}{2}$ CA $\checkmark exponential form$ CA $\checkmark answer$ CA $\checkmark exponential form$ CA $\checkmark answer$ AS: 8; (8+d); (8+2d); A $\checkmark forming both sequences$ CS: 8; 8r; 8r ² ; $\frac{1}{2}(3)^{n-1} = \frac{59049}{2}$ CA $\checkmark exponential form$ CA $\checkmark answer$ AS: 8; (8+d); (8+2d); A $\checkmark forming both sequences$ CA $\checkmark r^4 = 2048$ CA $\checkmark r^4 = 2048$ CA $\checkmark r^4 = 256$ CA $\checkmark r - value$

5.1	x = -2 and y	r = -1	AA✓✓ both asymptote equations	(2)
5.2	$y = \frac{a}{x+p} + q$ $y = \frac{a}{x+2} - 1$ $(-5; -3):$ $-3 = \frac{a}{-5+2} - 1$ $a = 6$		CA \checkmark substitution of p and q values CA \checkmark substitution of point $(-5; -3)$ CA \checkmark q - value	(3)

NSC Memo

5.3	$y = \frac{6}{x+2} - 1 = 0$	A√Equating to 0	
	$\frac{6}{x+2} = 1$ $x = 4$	CA✓transposing 1 to RHS CA✓answer	
			(3)
5.4	$g(x) = -\left(\frac{6}{x+2} - 1\right) + 2$ $g(x) = -\frac{6}{x+2} + 3$	CACA✓✓answer	(2)
	$g(x) = -\frac{6}{x+2} + 3$		
			[10]

6.1	(2; 4)	A√answer	(1)
6.2	$y \le 4$ OR	CA√answer OR	(1)
	$y \in (-\infty; 4]$	CA✓answer	(1)
6.3	S(0;1)	A√coordinates of S	(3)
	$1 = a(0-2)^2 + 4$	A✓substitution of the point S	
	-3 = 4a	$A\checkmark -3 = 4a$	
	$a = -\frac{3}{4}$		
6.4	$f(x) = -\frac{3}{4}(x-2)^2 + 4$		
	$f(2x) = -\frac{3}{4}(2x - 2)^2 + 4$	A \checkmark substitution of $2x$	
	$f(2x) = -3(x-1)^2 + 4$	$CA \checkmark f(x) = -3(x-1)^2 + 4$	
	T.P. (1;4)	$CA \checkmark x$ – value	
		$CA \checkmark y - value$	(4)
6.5	$y = -\frac{1}{2}x + 1$	$CA \checkmark gradient$ $CA \checkmark y - intercept$	(2)

NSC Memo

6.6	$L = \left(-\frac{3}{4}(x-2)^2 + 4\right) - \left(-\frac{1}{2}x + 1\right)$	A✓ subtraction of equations of both graphs	
	$L = -\frac{3}{4}x^2 + \frac{7}{2}x$	A√simplified expression for length	
	$L' = -\frac{3}{2}x + \frac{7}{2} = 0$	CA ✓ derivative and equal to 0	
	-3x = 7		
	$x = \frac{7}{3}$	CA✓answer	(4)
			[15]

7.1	x > 0	A✓ answer	(1)
7.2	$y = \left(\frac{1}{4}\right)^x$	AA✓✓answer	(2)
7.3	$-\log_4 x \ge -2$		
	$\log_4 x \le 2$	A ✓ change of inequality when multiplying by – 1	
	$x \le 16$ $0 < x \le 16$	CA✓value of 16 CA✓answer	(3)
7.4	h^{-1} $y = x$ h h	Exponential: $A \checkmark \text{ shape}$ $A \checkmark y - \text{ intercept}$ Log graph: $A \checkmark \text{ shape}$ $A \checkmark x - \text{ intercept}$	(4)
			[10]

8.1	$A = P(1+i)^n$		
	$800\ 000 = P\left(1 + \frac{9,45\%}{12}\right)^{60}$	A√substitution into formula	
	$P = \frac{800\ 000}{\left(1 + \frac{9,45\%}{12}\right)^{60}}$	$CA\checkmark$ making P the subject	
	P = R499 677,30	CA✓answer	(3)
8.2.1	$A = P(1-i)^{n}$ $A = 700\ 000(1-6\%)^{5}$ R513 732,82	A formula A substitution of P and i CA answer	(3)
8.2.2	$A = P(1+i)^{n}$ $A = 700\ 000(1+8\%)^{5}$ R1\ 028\ 529,65	A formula A substitution of P and i CA answer	(3)
8.2.3	$F = P(1+i)^n$ $514 796,83 = P\left(1 + \frac{9\%}{12}\right)^{60}$	$A \checkmark F$ – value and n value $A \checkmark i$ – value	
	P = R328 800,58	CA✓answer	(3)
			[12]

QUESTION 9 (penalize 1 mark once for incorrect notation in this question)

9.1	$f'(x) = \lim_{n \to 0} \frac{f(x+h) - f(x)}{h}$	A√formula	
	$f'(x) = \lim_{n \to 0} \frac{(x+h)^2 - 8(x+h) - (x^2 - 8x)}{h}$	A✓substitution	
	$f'(x) = \lim_{n \to 0} \frac{x^2 + 2xh + h^2 - 8x - 8h - x^2 + 8x}{h}$	CA✓ simplification of numerator	
	$f'(x) = \lim_{n \to 0} \frac{2xh + h^2 - 8h}{h}$		
	$f'(x) = \lim_{n \to 0} \frac{h(2x + h - 8)}{h}$	CA ✓ factorization	
	f'(x) = 2x - 8	CA✓answer	(5)
	OR $f(x+h) = (x+h)^2 - 8(x+h)$	OR	
	$= x^2 + 2xh + h^2 - 8x - 8h$	$A \checkmark f(x+h)$ value	
	$f(x+h) - f(x) = 2xh + h^2 - 8h$	$CA \checkmark f(x+h) - f(x)$	
	$\frac{f(x+h) - f(x)}{h} = \frac{h(2x+h-8)}{h} = (2x+h-8)$	value	
	$f'(x) = \lim_{n \to 0} (2x + h - 8)$	$CA \checkmark \frac{f(x+h)}{h}$ value	
	f'(x) = 2x - 8	A√formula	
		CA√answer	(5)
9.2.1	$g(x) = \left(5 - \sqrt{x}\right)^2$		
	$g(x) = 25 - 10x^{\frac{1}{2}} + x$	A√squaring	
	$g'(x) = -5x^{-\frac{1}{2}} + 1$	CACA✓✓ derivatives OR	(3)
	OR		
	Chain Rule:		
	$g(x) = \left(5 - \sqrt{x}\right)^2$	$\begin{vmatrix} A \checkmark 2 \\ A \checkmark (5 - \sqrt{x}) \\ CA \checkmark -\frac{1}{2} x^{-\frac{1}{2}} \end{vmatrix}$	
	$g(x) = (5 - \sqrt{x})^{2}$ $g'(x) = 2(5 - \sqrt{x}) \cdot -\frac{1}{2}x^{-\frac{1}{2}}$	$CA \checkmark -\frac{1}{2} x^{-\frac{1}{2}}$	
	L		(3)

NSC Memo

9.2.2	$D_x \left[\frac{x^2 - 4x}{\sqrt[3]{x}} \right]$		
	$=D_x\left[x^{\frac{5}{3}}-4x^{\frac{2}{3}}\right]$	AA✓✓ writing in exponential form	
	$=\frac{5}{3}x^{\frac{2}{3}}-\frac{8}{3}x^{-\frac{1}{3}}$	CACA✓✓ each derivative	(4)
			[12]

10.1	q = 3	A√answer	(1)
10.2	$f(x) = px^3 - 5x^2 - 4x + q$ $0 = p(-1)^3 - 5(-1)^2 - 4(-1) + 3$ $0 = -p - 5 + 4 + 3$	A substitution of $q = 3$ A substitution of $(-1; 0)$ A simplification	
	p = -5 + 4 + 3 = 2		(3)
10.3	$f(x) = 2x^3 - 5x^2 - 4x + 3$ $f'(x) = 6x^2 - 10x - 4 = 0$ $3x^2 - 5x - 2 = 0$	CA✓derivative and equal to 0	
	(3x+1)(x-2) = 0	CA√substitution into formula	
	$x = -\frac{1}{3} \qquad or x = 2$	CA✓ <i>x</i> – values	
	$y = \frac{100}{27}$ or 3,7 or $y = -9$	CA✓ y– values	(4)
10.4	-9 < k < 3	CA✓end points A✓interval	(2)
10.5	$f^{//}(x) = 12x - 10 > 0$ $x > \frac{5}{6}$	CA✓derivative and greater than 0 CA✓answer	(2)
10.6	$D/\left(\frac{1}{3}; 3,7\right)$	$CA \checkmark x$ – value $CA \checkmark y$ – value	(2)
10.7	$f'(x) = 6x^2 - 10x - 4 = -8$	A√derivative equal to −8	
	$3x^{2} - 5x + 2 = 0$ $(3x - 2)(x - 1) = 0$ $x = \frac{2}{3} or x = 1$	CA✓ factors CACA✓ each x- value	(4)
			[18]

11.1	$r^2 + \square^2 = 12^2$	A√T.O.P	
	$r = \sqrt{144 - \Box^2}$	CA✓answer	(2)
11.2	$V = \frac{1}{3}\pi r^2 h$	A√formula	
	$V = \frac{1}{3}\pi \left(144 - h^2\right)h$	$CA\checkmark$ expression in h	(2)
	$V = 48\pi \ h - \frac{1}{3} \ \pi \ h^3$		
11.3	$V = 48\pi \ h - \frac{1}{3} \ \pi \ h^3$		
	$V' = 48\pi - \pi h^2 = 0$ $48 - h^2 = 0$	CA✓derivative A✓derivative equal to 0	
	$\Box = \sqrt{48} = 4\sqrt{3} = 6,93 \ cm$	CA✓answer	(3)
11.4	$V = 48\pi \ h - \frac{1}{3} \ \pi \ h^3$		
	$V = 48\pi (6,93) - \frac{1}{3} \pi (6,93)^2$	CA substitution of 6,93 or $4\sqrt{3}$	(2)
	$V = 696,5 cm^3$	CA✓answer	
			[9]

$$S = 240$$

	5 – 240		
12.1	R - 122		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AAA✓✓✓ each set ✓26	(4)
	26 C - 96		(4)
12.2	122 + 36 + 70 - x + 26 = 240 $254 - x = 240$ $x = 14$	✓ equation ✓ simplifying ✓ answer	(3)
12.3			
a)	$\frac{26}{240} = 0.1083 = 10.83\%$	✓answer	(2)
b)	$\frac{144}{240} = 0.6 = 60\%$	✓answer	(2)
c)	$\frac{46}{240} = 0.1917 = 19.17\%$	✓answer	(1)
			[12]

Total Marks: 150