GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021 GRADE 12 CONTROL TEST

MATHEMATICS TERM1

MARKS : 100

TIME : 2 hours

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. which was used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. Use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. Where necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. ANSWER Question 7 on Annexure 7.1 7.2.2
- 9. ANSWER Question 8 on Annexure 8.1 8.1.3
- 10. ANSWER Question 9 on Annexure 9.1 9.2
- 11. Tear off page 12 till page 17. AND SUBMIT theses pages with your answer scripts.
- 12. An **information sheet** is on page 11 of the question paper.
- 13. Number the questions correctly according to the numbering used in the question paper.
- 14. Write neatly and legibly.

1.1 Solve for x:

1.1.1
$$(x-5)(x+1) = 0$$
 (2)

1.1.2
$$2x^2 - 11x + 7 = 0$$
 (correct to two decimal places) (3)

$$1.1.3 \quad x - 5x^{\frac{1}{2}} = -6 \tag{4}$$

1.2 Calculate
$$a$$
 and b if $\sqrt{\frac{5^{2014} - 5^{2012}}{6}} = a(5^b)$ and a is not a multiple of 5. (4)

1.3 Solve for x and y:

$$1 = 3y - x \text{ and } y^2 + 2xy = 3x^2 - 7 \tag{7}$$

[20]

QUESTION 2

Given the arithmetic series: $3 + 10 + 17 + \dots + 150$.

- 2.1 Write down the fourth term in the series. (1)
- 2.2 Determine the general term of the series. (2)
- 2.3 Express the series in sigma notation. (1)

[4]

QUESTION 3

3.1 Consider the progression: 3; $\frac{1}{2}$; 3; $\frac{4}{10}$; 3; $\frac{16}{50}$;......

- 3.1.1 Write down the next TWO terms of the progression. (1)
- 3.1.2 Calculate the sum of the first thirty-five terms of the progression. (5)

3.2 Calculate:
$$\sum_{n=3}^{\infty} 5(3)^{1-n}$$
 (4)

[10]

In the diagram below, the 1^{st} (outer) triangle is an equilateral triangle with sides of 8cm. A 2^{nd} triangle is drawn within this triangle by joining the midpoints of the sides of the 1^{st} triangle. This process is continued without end.

- 4.1 What his the perimeter of the 4^{th} triangle? (2)
- 4.2 Whats is the perimeter of the n^{th} triangle? (3)

[5]

5.1 In the sketch below, P is a point on the Cartesian plane, with $P\hat{O}X = \theta$.

Use the sketch to determine the following:

5.1.1 The value of y. (2)

5.1.2 The value of
$$\frac{2sin\theta cos\theta}{cos^2\theta - 1}$$
 (5)

5.2 Simplify the following, WITHOUT USING A CALCULATOR:

$$\frac{\cos(180^{\circ} + \theta) \cdot \tan(720^{\circ} - \theta) \cdot \sin^{2}(90^{\circ} - \theta)}{\sin(180^{\circ} - \theta)} + \sin^{2}\theta \tag{7}$$

5.3 If $6\sin^2\theta - 4\cos^2\theta = -5\sin\theta \cdot \cos\theta$, determine the general solution for θ . (8)

[22]

In the sketch below, PS is the median of $\triangle PQR$, and thus QS = SR = x. $\hat{Q} = a$ and $Q\hat{P}S = b$

6.1 Show that
$$PS = \frac{x \sin a}{\sin b}$$
 (2)

Express the size of
$$S_2$$
, in terms of a and b , without reasons. (1)

6.3 Hence, show that: Area of
$$\triangle PSR = \frac{x^2 sina \times sin(a+b)}{2sinb}$$
 (3)

6.4 Determine the area of $\triangle PSR$, rounded to two decimal places, if x = 14,2cm, $a = 34^{\circ}$ and

$$b = 41^{\circ}. \tag{3}$$

[9]

Give reasons for your statements and calculations in QUESTIONS 7, 8 and 9

Use the Annexure's provided to answer QUESTIONS 7, 8 and 9

QUESTION 7

7.1 In the diagram below, AB is a tangent to the circle passing though B, E, C and D

AD cuts the circle at F. AC is drawn.

Give reasons for the following statements:

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^\circ$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^\circ$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2 In the diagram below, circle centre M intersects a second smaller circle at A and B.

A, C, B and T are points on circle M.

AB is the diameter of the smaller circle.

- 7.2.1 Determine the size of \hat{C} . (6)
- 7.2.2 Explain why AMBC is not a cyclic quadrilateral. (1)

[12]

In the figure below, RDS is a tangent to circle O at D. BC = DC, and $\hat{CDS} = 40^{\circ}$.

Thus, calculate the size of the following angles, with reasons.

$$8.1 B\hat{D}C (2)$$

$$8.2 \qquad \hat{C} \tag{2}$$

$$8.3 \qquad \hat{A} \tag{2}$$

$$8.4 \qquad \hat{O}_1 \tag{1}$$

[7]

The diagram below is the top view design of a new railway system. There are eight stations being built and these are labelled with letters from A- H.You have been asked to do some calculations fro the railway company. As the engineer you know that:

• $AF \parallel BE \text{ and } AC \parallel GD$.

•
$$\frac{AB}{BC} = \frac{4}{7}$$
 and $\frac{AG}{AF} = \frac{9}{17}$.

9.1 Calculate

$$9.1.1 \quad \frac{FE}{FC}. \tag{3}$$

$$9.1.2 \quad \frac{CD}{DF}. \tag{2}$$

9.2 If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to build one kilometre of the track, determine the number of hours it will take to build the section from E to D. (6)

[11]

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1-i)^{n}$$

$$A = P(1 - ni)$$
 $A = P(1 - i)^n$ $A = P(1 + i)^n$

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$T_n = a + (n-1)a$$

$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; \quad r \neq 1$$

$$T_n = ar^{n-1}$$
 $S_n = \frac{a(r^n - 1)}{r - 1}$; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
 $area\Delta ABC = \frac{1}{2}ab \cdot \sin C$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

 $(x; y) \rightarrow (x \cos \theta - y \sin \theta; y \cos \theta + x \sin \theta)$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \underbrace{\sum_{i=1}^n (x_i - \bar{x})^2}_{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

Name:

Class:

ANNEXURE 7.1 - 7. 2.2

QUESTION 7

7.1

Give reasons for the following statements:

(5)

STATEMENT	REASONS
$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	
$\hat{D}_2 + \hat{E} = 180^\circ$	
$\hat{B}_1 = \hat{D}_1$	
$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^\circ$	
$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	

7.2.1 Determine the size of \hat{C} .

(6)

7.2.2 Explain why AMBC is not a cyclic quadrilateral.

(1)

[12]

Name:			
ranic.			

Class:

ANNEXURE 8.1 - 8.1.3

QUESTION 8

8.1	$B\hat{D}C$	(2	2)
8.1	$B\hat{D}C$	(2)

 $8.2 \quad \hat{C}$ (2)

8.3	A		(2)
8.4	\hat{O}_1		(1)

[7]

Name:_____

Class:_____

ANNEXURE 9.1 - 9.2

QUESTION 9

9.1 Calculate

$$9.1.1 \quad \frac{FE}{FC}. \tag{3}$$

 $9.1.2 \quad \frac{CD}{DF}. \tag{2}$

9.2	If the straight line distance of the track from F to C is 374 kilometres and its takes 50 hours to			
	build one kilometre of the track, determine the number of hours it will take to build the	section		
	from E to D.	(6)		
_				
_				
_				
		F117		

GAUTENG DEPARTMENT OF EDUCATION

JOHANNESBURG NORTH DISTRICT

2021 GRADE 12 CONTROL TEST

MATHEMATICS TERM 1

MARKING GUIDELINES

MARKS : 100

TIME : 2 hours

	QUESTION 1		
1.1.1	(x-5)(x+1) = 0 x = 5 or x = -1	$\checkmark x = 5$ $\checkmark x = -1$	
	$ x-y ^{2}$	$\mathbf{v} x = -1$	(2)
1.1.2	$2x^2 - 11x + 7 = 0$	✓ Sub	
	$x = \frac{-(-11) \pm \sqrt{(-11)^2 - 4(2)(7)}}{2(2)}$	$\checkmark x = 4,77$ $\checkmark x = 0,73$	
	x = 4.77 or x = 0.73		(3)
1.1.3	$x - 5x^{\frac{1}{2}} = -6$ $x - 5x^{\frac{1}{2}} + 6 = 0$ Let $k^2 = x$ and $k = x^{\frac{1}{2}}$ $k^2 - 5k + 6 = 0$ $(k - 3)(k - 2) = 0$ $k = 3 \text{ or } k = 2$ But: $x^{\frac{1}{2}} = 3$ or. $x^{\frac{1}{2}} = 2$ $(x^{\frac{1}{2}})^2 = (3)^2 \text{ or. } (x^{\frac{1}{2}})^2 = (2)^2$ $x = 9 \text{ or } x = 4$	✓ Standard form ✓ factors ✓ squaring ✓ x values	(4)
1.2	$\sqrt{\frac{5^{2014} - 5^{2012}}{6}}$ $= \sqrt{\frac{5^{2012} \cdot 5^2 - 5^{2012}}{6}}$ $= \sqrt{\frac{5^{2012} (25 - 1)}{6}}$ $= \sqrt{4 \cdot 5^{2012}}$ $= 2(5^{1006})$ $\therefore a = 2. \text{ and. } b = 1006$	$\sqrt{\frac{5^{2012}.5^2 - 5^{2012}}{6}}$ $\sqrt{\sqrt{4.5^{2012}}}$ $\sqrt{a} = 2.$ $\sqrt{b} = 1006$	(4)

1.3	$1 = 3y - x \dots (1)$	✓ Equation 3			
	$y^2 + 2xy = 3x^2 - 7 \dots (2)$	✓ Sub			
	$x = 3y - 1 \dots (3)$	✓ Simplification			
	Sub (3) into (2)	✓ Standard form			
	$y^{2} + 2y(3y - 1) = 3(3y - 1)^{2} - 7$	✓ Factors			
	$y^{2} + 6y^{2} - 2y = 27y^{2} - 18y + 3 - 7$ $0 = 20y^{2} - 16y - 4$	✓ y-values			
	$0 = 20y^2 - 16y - 4$ $0 = 5y^2 - 4y - 1$	✓ x-values			
	0 = (y - 1)(5y + 1)				
	$y = 1 \text{or} y = \frac{-1}{5}$				
	Sub y-values into (3)	(7)			
	$x = 3(1) - 1$ or $x = 3(\frac{-1}{5}) - 1$				
	$x = 2 \qquad \text{or} \qquad x = \frac{-8}{5}$				
	20 MARKS				

	QUESTION 2			
2.1	$T_n = 24$	✓Ans		
			(1)	
2.2	$T_n = 3 + (n-1)(7)$ $T_n = 7n - 4$	✓ Sub		
	$T_n = 7n - 4$	✓ Ans		
			(2)	
2.3	$\sum_{k=0}^{22} (7k-4)$	✓Ans		
	k=1		(1)	
	4 MAKRS			

	QUESTION 3				
3.1.1	$3; \frac{64}{250}$	✓ Ans			
3.1.2	$3 \times 18 = 54$ $S_{17} = \frac{\frac{1}{2} \left[\left(\frac{4}{5} \right)^{17} - 1 \right]}{\left(\frac{4}{5} \right) - 1}$	✓ Odd terms ✓ Sub			
	$= 2,44$ $\therefore S_{35} = 56,44$	✓ 2,44 ✓ $S_{35} = 56,44$ (5)			
3.2	$T_1 = \frac{5}{9}$ $T_2 = \frac{5}{27}$ $\therefore r = \frac{1}{3}$ $S_{\infty} = \frac{\frac{5}{9}}{1 - \frac{1}{3}}$	✓ a ✓ r ✓ Sub ✓ Ans			
	$S_{\infty} = \frac{\frac{5}{9}}{1 - \frac{1}{3}}$ $= \frac{5}{6} \text{ or } 0.83$	(4)			
	10 MARKS				

	QUESTION 4			
4.1	3cm	✓ ✓ Ans		
			(2)	
4.2	24; 12; 6; 3	✓ Sequence		
	$r=\frac{1}{2}$	✓ ratio		
	2	✓ Ans		
	$T_n = 24(\frac{1}{2})^{n-1}$		(3)	
	5 MAKRS			

QUESTION 5				
5.1.1	$y^2 = (2)^2 - (-\sqrt{2})^2$	✓ method		
	$\begin{vmatrix} y^2 = (2)^2 - (-\sqrt{2})^2 \\ y = \sqrt{2} \end{vmatrix}$	✓ Answer		
			(2)	
5.1.2	$\frac{2\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{2}}{2}\right)}{\left(-\frac{\sqrt{2}}{2}\right)^{2}-1} = \frac{2\left(-\frac{1}{2}\right)}{\frac{1}{2}-1} = 2$	✓✓✓ substitution		
J.1.2	$ 2 \frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} 2 -\frac{1}{2} $	√sign		
	$\left \frac{(2)(2)}{(5)^2} \right = \frac{(2)}{1} = 2$	✓answer		
	$\left -\frac{\sqrt{2}}{2} \right -1 \qquad \frac{1}{2} -1$		(5)	
5.2	$\frac{\cos(180^{\circ} + \theta) \cdot \tan(720^{\circ} - \theta) \cdot \sin^{2}(90^{\circ} - \theta)}{+\sin^{2}\theta} + \sin^{2}\theta$	$\sqrt{-\cos\theta}$		
5.2	$\sin(180^{\circ} - \theta)$	$\sqrt{-\tan\theta}$		
		$\checkmark \cos^2 \theta$		
	$= \frac{-\cos\theta \times -\tan\theta \times \cos^2\theta}{\sin\theta} + \sin^2\theta$	$\checkmark \sin \theta$		
	$\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta$	✓ Identity: $\tan \theta$		
	$= \frac{\cos\theta \times \frac{\sin\theta}{\cos\theta} \times \cos^2\theta}{\sin\theta} + \sin^2\theta$	$\sqrt{\cos^2\theta + \sin^2\theta}$		
		√ =1		
	$=\cos^2\theta + \sin^2\theta = 1$		(7)	
5.3	$6\sin^2\theta - 5\sin\theta\cos\theta - 4\cos^2\theta = 0$	√ =0		
	$(2\sin\theta - \cos\theta)(3\sin\theta + 4\cos\theta) = 0$	✓factors		
	$\therefore 2\sin\theta = \cos\theta$			
	$\therefore \tan \theta = \frac{1}{2}$	$\checkmark \tan \theta$		
	$Ref \angle = 26,57^{\circ}$	✓solution		
	$\therefore \theta = 26,57^{\circ} + n180^{\circ}$ OR:	Solution		
	$\theta = 180^{\circ} + 26,57^{\circ} + n180^{\circ}$			
	$\therefore \theta = 206,57^{\circ} + n180^{\circ}$			
	AND:	✓solution		
	$3\sin\theta = -4\cos\theta$			
	$\therefore \tan \theta = -\frac{4}{3}$	$\checkmark \tan \theta$		
	3	✓solution		
	$Ref \angle = 53,13^{\circ}$			
	$\therefore \theta = 180^{\circ} - 53,13^{\circ} + n180^{\circ}$			
	$\theta = 126,87^{\circ} + n180$	✓solution		
	OR:	Solution		
	$\theta = 360^{\circ} - 53,13^{\circ} + n180^{\circ}$		(0)	
	$\therefore \theta = 306,87^{\circ} + n180^{\circ}$		(8)	

QUESTION 6				
6.1	$\frac{PS}{\sin a} = \frac{x}{\sin b}$ $\therefore PS = \frac{x \sin a}{\sin b}$	✓✓ method sine rule (2)		
6.2	$S_2 = a + b$	✓accuracy (1)		
6.3	$Area = \frac{1}{2}PS \times SR \sin S_2$ $= \frac{1}{2} \left(\frac{x \sin a}{\sin b} \right) (x) (\sin(a+b))$ $= \frac{x^2 \sin a \cdot \sin(a+b)}{2 \sin b}$	✓ method: Area rule ✓ ✓ sub in (3)		
6.4	$Area = \frac{(14,2)^2 \times \sin(34^\circ) \times \sin(34^\circ + 41^\circ)}{2\sin(41^\circ)}$ $= 83,01cm^2$	✓ sub into formula ✓ answer (3)		
9 MARKS				

7.1	STATEMENT	REASONS
	$\hat{C}_1 + \hat{C}_2 = \hat{F}_2$	✓ [ext ∠' of cyclic quad]
	$\hat{D}_2 + \hat{E} = 180^0$	✓ [opp ∠' of cyclic quad]
	$\hat{B}_1 = \hat{D}_1$	✓ [tan chord]
	$\hat{B}_2 + \hat{B}_3 + \hat{D}_1 + \hat{D}_2 = 180^0$	√ [opp ∠' of cyclic quad]
	$\hat{B}_2 + \hat{B}_1 = \hat{C}_1 + \hat{C}_2$	✓ [tan chord]
		(5)
7.2.1	$\hat{AMB} = 90^{\circ}$ ($\angle s$ in semi circle)	✓ S ✓ R ✓ S
	$\hat{T} = 45^{\circ}$ $(\angle' \text{ at center } = 2 \times \angle \text{ at circum})$	✓ R ✓ S ✓ R
	$\hat{C} = 135^{\circ}$ (opp $\angle s$ of cyclic quad = 180)	(6)
7.2.2	$\hat{M} + \hat{C} \neq 180^{\circ}$; opp \angle 's do not add up to 180°	✓ S & R (1)
	12 MARKS	

The length of ED in kilometres is $\frac{20}{187} \times 374$ km = 40 kilometres.

It will take 2 000 hours to build the track from E to D.

OR

Alternate:

Let FE =
$$4p$$
 and EC = $7p$
FD = $8m$ and DC = $9m$
 $\therefore 11p = 374$ $\therefore p = 34$
 $17m = 374$ $\therefore m = 22$
 \therefore DC = $374 - 4p - 9m$
= 40 km
 \therefore 2 000 hours

OR

Alternate:

FE =
$$\frac{4}{11}$$
(374) = 136
CD = $\frac{9}{17}$ (374) = 198
∴ ED = 374 - 136 - 198
= 40 km

 $\therefore 4 \text{ hours} \rightarrow 40 \times 50$ = 2 000 hours

If FC =
$$p$$
 then ED = $p - \frac{9}{17}p - \frac{4}{11}p$

$$ED = \frac{20}{187}p$$

The length of ED in kilometres is $\frac{20}{187} \times 374 \text{ km} = 40 \text{ kilometres}$

It will take 2 000 hours to build the track from E to D.

or

Let FE =
$$4p$$
 and EC = $7p$

FD = $8m$ and DC = $9m$
 $\therefore 11p = 374 \therefore p = 34$
 $17m = 374 \therefore m = 22$
 $\therefore DC = 374 - 4p - 9m$

= 40 km
 $\therefore 2000 \text{ hours}$

or

FE =
$$\frac{4}{11}(374) = 136$$

CD = $\frac{9}{17}(374) = 198$
 \checkmark

∴ ED = $374 - 136 - 198$
= 40 km

 \checkmark
∴ 4 hours \rightarrow 40×50
= 2 000 hours

(6)

11 MARKS

TOTAL MARKS 100