

SEKHUKHUNE SOUTH DISTRICT

SENIOR CERTIFICATE

GRADE 12

MATHEMATICS PAPER 2

PRE-TRIAL 2021

MARKS: 150 TIME: 3 HOURS

This question paper consists of 11 pages and 3-page diagram sheets.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions in the answer book.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. ANSWERS ONLY will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- 6. If necessary, round answers off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. A diagram sheets for questions 1.3, 1.5, 8.1 and 9 are included at the end of the question paper.
- 9. Number the answers correctly according to the numbering system used in this question paper.
- 10. Write legibly and present your work neatly.

QUESTION 1

Mathematical Literacy teachers usually complain about their learners' language and reading skills. The data below shows the percentages which 8 candidates obtained for English and Mathematical Literacy during the June Examination.

Mathematical Literacy	25	38	40	47	12	49	54	59
English	34	53	62	44	20	50	61	54

1.1 Calculate the:

	1.1.1 mean percentage of Mathematical Literacy.	(2)
	1.1.2 standard deviation of Mathematical Literacy.	(2)
1.2	Determine the number of learners whose percentages in Mathematical Literacy li	ie
	within ONE standard deviation of the mean.	(3)
1.3	Use the grid provided to draw a scatter plot to represent the above data.	(3)
1.4	Calculate an equation for the least squares regression line (line of best fit) for the	;
	data.	(3)
1.5	Draw the regression line on the scatter plot.	(2)
1.6	Describe the trend of the data by making use of the correlation coefficient.	(3)
1.7	Estimate Mathematical Literacy mark a learner would get if his English mark is	
	58%.	(2)
		[20]
		[40]

In the diagram below A(0;11), B(12;11) and C(16;3) are the vertices of Δ ABC, with height CD .

2.1	Write down the equation and the length of line AB.	(3)	
2.2	Write down the coordinates of point D.		(2)
2.3	Determine the coordinates of M, the midpoint of AC.		(2)
2.4	Determine the equation of the perpendicular bisector of AC.		(4)
2.5	Does the line in 2.4 pass through B? Justify your answer with relevant calculations.		(2)
2.6	Determine the equation of the line parallel to AC, passing through D.		(3)
2.7	Calculate the area of \triangle ABC.		(3)
		[[19]

In the diagram, the circle with centre M passes through points V, R(-3;2) and T(5;4). Q is the point (-2;-2) and the lines through RQ and TV meet at P. The inclination angle of PT is α and the angle of inclination of PR is β .

V is the y-intercept of both the circle and line TP.

3.1	Determine the equation of the circle with centre M.	(5)
3.2	Show, using analytical methods, that PR is a tangent to the circle at R.	(3)
3.3	Determine the coordinates of V.	(4)
3.4	If $\hat{RPT} = \theta$, calculate θ to ONE decimal place.	(6)
		[18]
QUE	STION 4	
4.1.1	Simplify the following expression to a single trigonometric function:	
	$\frac{2\sin(180^\circ + x)\sin(90^\circ + x)}{4x^\circ}$	(5)
	$\cos^{3}x - \sin^{3}x$. /

4.1.2 For which value(s) of
$$x, x \in [0^\circ; 360^\circ]$$
 is the expression in 4.1 undefined? (3)

4.2 Evaluate, without using a calculator:
$$\frac{\cos 347^{\circ} \cdot \sin 193^{\circ}}{\tan 315^{\circ} \cdot \cos 64^{\circ}}$$
(5)

4.3 Prove the following identity:

$$\frac{\cos 3x}{\cos x} = 2\cos 2x - 1$$

Copyright reserved

•

QUESTION 5

The graphs of $f(x) = -2\cos x$ and $g(x) = \sin(x + 30^\circ)$ for $x \in [-90^\circ; 180^\circ]$ are drawn in the diagram below.

(1)

- 5.2 Calculate the *x*-coordinates of P and Q, the points where f and g intersect. (7)
- 5.3 Determine the *x*-values, $x \in [-90^\circ; 180^\circ]$, for which:

$$5.3.1 \quad g(x) \le f(x) \tag{3}$$

5.3.2
$$f(x).g(x) > 0$$
 (3)

AB is a vertical tower of *p* units high.

D and C are in the same horizontal plane as B, the foot of the tower. The angle of elevation of A from D is *x*. BDC = y and $DCB = \theta$. The distance between D and C is *k* units.

6.1.1 Express p in terms of DB and x.

(2)

6.1.2 Hence prove that:
$$p = \frac{k \sin \theta \tan x}{\sin y \cos \theta + \cos y \sin \theta}$$
 (5)

6.2 Find BC to the nearest meter if
$$x = 51,7^\circ$$
, $y = 62,5^\circ$, $p = 80 m$ and $k = 95 m$. (4)

[11]

- 7.1 Complete the theorem that states: the line from the centre of the circle to the midpoint of the chord ... (1)
- 7.2 Write down the converse of the theorem in 7.1.
- 7.3 AB is a diameter of circle O. OD is drawn parallel to chord BC and intersects AC at E.

The radius is 10 cm and AC = 16 cm.

- 7.3.1 Prove that AE = EC. (2)
- 7.3.2 Prove that $E_1 = 90^\circ$. (2)
- 7.3.3 Hence calculate the length of ED. (3)

(2)

8.1 In the diagram, the circle with centre O passes through points A, B and T. PR is a tangent to the circle at T. AB, BT and AT are chords.

(6)

8.2 VN and VY are tangents to the circle at N and Y. A is a point on the circle, and AN, AY and NY are chords so that $A = 65^{\circ}$. S is a point on AY so that AN || SV. S and N are joined.

8.2.1	Write down, with reasons, THREE other angles each equal to 65° .	(3)
8.2.2	Prove that VYSN is a cyclic quadrilateral.	(2)
8.2.3	Prove that $\triangle ASN$ is isosceles.	(5)

[16]

Use the diagram below to prove the theorem which states that if DE||BC then

[6]

QUESTION 10

CE is a straight line passing through centre O of the circle.

CA is a tangent to the circle at B. AO intersects chord BE at F. BD \parallel AO.

E = x.

10.1	Give a reason why $\angle EBD = 90^{\circ}$	(1)
10.2	Give, with reasons, THREE other angles each equal to x.	(3)
10.3	Give a reason why ABOE is a cyclic quadrilateral	(1)
10.4	Express CBE in terms of x.	(2)
10.5	Prove that:	

10.5.1 $\Delta \operatorname{CBD} ||| \Delta \operatorname{CEB}$ (2)

10.5.2
$$2EF. CB = CE.BD$$
 (5)

10.5.3
$$\frac{2EF}{CE} = \frac{AO}{(4)}$$

(

GRAND TOTAL: 150

--AO-

DIAGRAMSHEET

NAME:

QUESTION 1.3

MATHS LIT VS ENGLISH

QUESTION 8.

QUESTION 9

Use the diagram below to prove the theorem which states that if DE||BC then

(6)

SEKHUKHUNE SOUTH DISTRICT

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

MEMORANDUM

PRE-TRIAL 2021

MARKS: 150

This memorandum consists of 12 pages.

Copyright reserved

Please turn over

2 NSC/*NSS*-Memorandum

QUESTION 1

MATHS LIT VS ENGLISH

1.1.1	$\bar{x} = \frac{324}{8}$	$\sqrt{\frac{324}{2}}$	
	=40,5	v ✓ 40,5	(2)
1.1.2	$\delta = 14,5688$	✓ ✓ accuracy	(2)
1.2	$= 14,57$ $(40,5-14,57; 40,5 + 14,57)$ $(25,93; 55,07)$ $\therefore 5 \text{ learners.}$	✓method ✓(25,93; 55,07)	
		√5	(3)
1.3	See scatter plot above	✓ 2-4 points	
		\checkmark 5-7pts correct	
		$\checkmark \checkmark \checkmark$ all pts correct	(3)
1.4	a = 16,89 $b = 0,75y = 16,89 + 0,75x$	$\checkmark a \checkmark b \checkmark$ equation	(3)
1.5	See above	✓ positive gradient	
		\checkmark c-value betw 15 and (2)	20
1.6	<i>r</i> = 0,82	$\checkmark r = 0.82$	
	It is a strong positive relationship	√strong	
		✓ positive	(3)
1.7	54,81%	1	
		✓accuracy	(2)
			[20]

	A (0; 11) B (12;11) D C (16; 3) x		
2.1	y = 11 $AB = 12$	\checkmark y = 11	
	AD = 12	✓ AB = 12	(3)
2.2	D(16;11)	\checkmark	(2)
2.3	M(8; 7)	11	(2)
2.4	$m_{AC} = \frac{3-11}{16} = -\frac{8}{16} = -\frac{1}{2}$	$\sqrt{-\frac{1}{2}}$	
	$m_{line} = 2$	$\checkmark m_{\text{line}} = 2$	
	y - 7 = 2(x - 8)	✓ substitution	
	y = 2x - 9	\checkmark equation	(4)
2.5	y = 2(12) - 9	✓ substitution	
	$\begin{array}{c} = 15 \\ \neq 11 \end{array}$	✓ ≠ 11	
	No, it does not pass through B	No, it does not pass through B	(2)
2.6	$\tan\theta = m_{\rm BC} = \frac{11-3}{12-16}$	$\sqrt{\tan\theta} \sqrt{-2}$	
	$\tan \theta = -2$ $\theta = 116,57^{\circ}$	√ 116,57°	(3)
2.7	$m_{\text{new line}} = -\frac{1}{2}$	$\sqrt{-\frac{8}{12}}$	
	$y-11 = -\frac{1}{2}(x-16)$	✓ substitution	
	$y = -\frac{1}{2}x + 19$	√equation	(3)
2.8	Area $\triangle ABC = \frac{1}{2}base height$	✓ <i>h</i> =8	
	$=\frac{1}{2} \times 12 \times 8$	✓ s ubstitution	
	= 48 sq units	√answer	(3)
<u> </u>			[22]

	У М R (-3;2) Q (-2;-2) Р V	T (5;4)	
3.1	$M(1; 3) = (5-1)^2 + (4-3)^2$	✓√M	
	$r^2 = 16 + 1 = 17$	✓ substitution	
	$(x-1)^2 + (y-3)^2 = 17$	$\checkmark r^2 = 17$	
		$\checkmark (x-1)^2 + (y-3)^2 = 17$	(5)
3.2	$m_{PR} = \frac{-2-2}{-2+3} = -4$	✓ mpr	
	$m_{\rm RT} = \frac{4-2}{5+3} = \frac{1}{4}$	✓mRT	
	$m_{PR} \times m_{RT} - 1$		
	PR is a tangent	✓ product = -1	(3)
3.3	Y int: $(0-1)^2 + (y-3)^2 = 17$	\checkmark let $x = 0$	
	$ \begin{array}{c} 1+y^2 - 6y + 9 = 17 \\ y^2 - 6y - 7 = 0 \end{array} $	✓standard form	
	(y-7)(y+1) = 0	$\checkmark y = -1 \text{ or } y = 7$	
	y = -1 or $y = 7V(0; -1)$	✓V(0; -1)	(4)
3.4	$m_{PT} = \frac{4+1}{5-0} = 1$	✓mpT	
	$\tan \alpha = 1$	$\checkmark \tan \alpha = 1$	
	$\frac{\alpha = 45^{\circ}}{\tan\beta = -4}$	$\checkmark \alpha = 45^{\circ}$	
	$\beta = 104^{\circ}$	$\checkmark \tan\beta = -4$	
	$\varphi = 2 \Re^2$	$\checkmark \beta = 104^{\circ} \checkmark \theta = 59^{\circ}$	(6)
			[18]

4.1.1	$2\sin(180^\circ + x)\sin(90^\circ + x)$	$\sqrt{-2\sin x}$
	$\cos^4 x - \sin^4 x$	√cosx
	$-2\sin x.\cos x$	√factorisation
	$= \frac{1}{(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)}$	$\sqrt{-\sin^2 r}$
	-sin2r	$\sqrt{\cos 2x}$
	$=\frac{-\frac{3112x}{cos^2 r(1)}}{cos^2 r(1)}$	
	$= -\tan 2x$	(5)
4.1.2	$At \cos 2x = 0$	$\checkmark \cos 2x = 0$
	$2x = 90^{\circ} \text{ or } 2x = 270^{\circ}$ $x = 45^{\circ} \text{ or } x = 135^{\circ}$	$\checkmark 2x = 90^{\circ} \text{ or } 2x = 270^{\circ}$
		$\checkmark x = 45^{\circ} x = 135^{\circ}$ (3)
4.2		/cos13°
	$= \frac{(\cos 13^\circ)(-\sin 13^\circ)}{2}$	$\sqrt{-\sin^2 3^\circ}$
	$(-tan 45^\circ).(cos 64^\circ)$	$\sqrt{-tan45^\circ}$
	$\cos 13^{\circ} - \sin 13^{\circ}$	(multiply by 2 in
	$=\frac{cos13sta13}{-1.cos64^{\circ}}$	✓ multiply by 2 m numerator and denominator
	$=$ $\frac{2 \times sin13^{\circ} cos13^{\circ}}{2 \times sin13^{\circ} cos13^{\circ}}$	
	2 <i>cos</i> 64°	, sin26°
	sin26°	$\sqrt{\frac{2sin26^{\circ}}{2sin26^{\circ}}}$
	$=\frac{50026}{2sin26^{\circ}}$	
	$=\frac{1}{2}$	(5)
	2	
4.3	$1 \text{ HS} \cdot \frac{\cos(2x+x)}{\cos(2x+x)}$	
	$\frac{COSX}{COS2r} \cos r - \sin 2r \sin r$	$\int \cos^2 x \cos x - \sin^2 x \sin x$
	$=\frac{\cos 2x \cos x - \sin 2x \sin x}{\cos x}$	
		(replacing sin).
	$=\frac{\cos 2x \cdot \cos x - 2\sin x \cos x \cdot \sin x}{\cos x \cdot \sin x}$	\checkmark replacing $\sin 2x$
	cosx	
	$cosx(cos2x-2sin^2x)$	
	$=\frac{1}{\cos x}$	√factorise
	$= cos2x - 1 + 1 - 2sin^2x$	✓ +1-1
	= cos 2x - 1 + cos 2x $= 2cos 2x - 1$	✓ replacing $1 - 2sin^2x$ (5)
	OR	

$= \frac{\frac{\cos(2x+x)}{\cos x}}{\cos x}$	$\checkmark cos2x.cosx - sin2x.sinx$
$=\frac{cos2x.cosx-2sinxcosx.sinx}{cosx}$	✓ replacing $\sin 2x$
$= \frac{cosx(cos2x-2sin^2x)}{cosx}$ $= cos2x-2sin^2x$	√factorise
$= 2\cos^{2}x - 1 - 2\sin^{2}x$ = 2(cos ² x - sin ² x) - 1 = 2cos ² x - 1	✓ replacing $\cos 2x$ ✓ replacing $\cos^2 x - \sin^2 x$
	(5)
	[18]

5.1	360°	\checkmark	(1)
5.2	$sin(x + 30^{\circ}) = -2cosx$ $sinxcos30^{\circ} + cosxsin30^{\circ} = -2cosx$ $sin x \left(\frac{\sqrt{3}}{2}\right) + cos x \left(\frac{1}{2}\right) = -2cosx$ $\sqrt{3}sinx + cosx = -4cosx$	 ✓ equating f and g ✓ expanding sin(x + 30°) ✓ special angle values 	
	$\sqrt{3}\sin x = -5\cos x$ $\tan x = -\frac{5}{\sqrt{3}}$ $x = 180^{\circ} - 70,89^{\circ} + k.180^{\circ}$ $x = 109.11^{\circ} + k.180^{\circ}, k \in Z$ $x = -70,89^{\circ} \text{ or } x = 109,11^{\circ}$	$\sqrt{\tan x} = -\frac{5}{\sqrt{3}}$ $\sqrt{x} = -70,89^{\circ}$ $\sqrt{x} = 109.11^{\circ} + k.180^{\circ}$ $\sqrt{x} = 109,11^{\circ}$	(7)
5.3.1	$x \in [-90^\circ; -70,89^\circ] \cup [109,11^\circ;180^\circ]$	✓✓ boundaries✓ correct notation	(3)
5.3.2	<i>x</i> ∈ (−90°; −30°) ∪ (90°; 150°)	$\checkmark (-90^{\circ}; -30^{\circ})$ $\checkmark (90^{\circ}; 150^{\circ})$	(2)
		✓ correct notation	(3) [14]

6.1.1	In $\triangle ABD$: tan $x = \frac{p}{DB}$	$\checkmark \tan x = \frac{p}{DB}$
	p = DB.tanx	$\checkmark p = DB \tan x \tag{2}$
6.1.2	$\frac{DB}{\sin\theta} = \frac{k}{\sin(180 - (y + \theta))}$ $DB = \frac{k \cdot \sin\theta}{\sin(y + \theta)}$	$\sqrt{B\widehat{D}C} = 180 - (y + \theta)$ $\sqrt{\frac{DB}{\sin\theta}} = \frac{k}{\sin(180 - (y + \theta))}$ $\sqrt{reduction formula}$
	$p = \frac{k.sin\theta}{\sin(y+\theta)} \times \tan x$ $= \frac{ksin\theta.tanx}{sinycos\theta + cosy.sin\theta}$	 ✓replacing DB ✓expanding sin(y+θ) (5)
6.2	$tan51,7^{\circ} = \frac{80}{DB}$ $DB = \frac{80}{tan51,7^{\circ}} = 63,18 m$ $BC^{2} = (63,18)^{2} + 95^{2} - 2(63,18)(95)cos62,5^{\circ}$ $= 7473,789697 \dots$ $\therefore BC = 86,45 \approx 86 m$	✓ $tan51,7^\circ = \frac{80}{DB}$ ✓ $DB = 63,18 m$ ✓ application of cosine formula. ✓ $86m$ (4)
		[11]

7.1	is perpendicular to the chord	✓ (1)
7.2	The line from the centre of the circle perpendicular to the chord, bisects the chord	✓ The line from the centre of the circle perpendicular to the chord
		\checkmark bisects the chord (2)

8.1	Construction: Draw diameter TC and join BC. $C\hat{B}T = 90^{\circ} (\angle \text{ in semi } \bigcirc)$ $\hat{C} + \hat{T}_2 = 90^{\circ} (\angle sof \Delta)$ $\hat{T}_1 + \hat{T}_2 = 90^{\circ} (\text{tangent } \bot r)$ $\therefore \hat{C} = \hat{T}_1$ But $\hat{C} = \hat{A} (\angle s \text{ in same segment})$	✓ construction ✓ S / R ✓ S ✓ S/ R ✓ S/ R
	But $C = A$ (\angle 's in same segment) $\therefore \hat{T}_1 = \hat{A}$	\checkmark S/ R \checkmark conclusion (6)

11 NSC/*NSS*-Memorandum

Use the diagram below to prove the theorem which states that if	
DE BC then $\frac{BD}{AD} = \frac{EC}{AE}$.	
A D B C	√Construction
Construction: In $\triangle ADE$ draw altitudes h and k	
$\frac{area \ \Delta BDE}{area \ \Delta ADE} = \frac{\frac{1}{2}BD \times k}{\frac{1}{2}AD \times k}$	√ S
$=\frac{BD}{AD}$	√ S
$\frac{\operatorname{area}\Delta CED}{\operatorname{area}\Delta ADE} = \frac{\frac{1}{2}EC \times h}{\frac{1}{2}AE \times h}$	√ S
$= \frac{EC}{AE}$	
But area $\triangle BDE = area \ \triangle CED$ Same base, same height	√S & R
$\therefore \frac{area \ \Delta BDE}{area \ \Delta ADE} = \frac{area \ \Delta CED}{area \ \Delta ADE}$	√ S
$\therefore \frac{BD}{AD} = \frac{EC}{AE}$	נטן

QUESTION 10

Copyright reserved

$ \begin{array}{c} C\\ B\\ B\\ 1\\ 2\\ 2\\ F\\ 1\\ 0\\ C\\ C\\$			
10.1	Subtended by a diameter / Angle in a semi-circle	√ Answer	(1)
10.2	$ \begin{array}{ll} \hat{B}_2 = x & (\text{radii} =) \\ \hat{B}_4 = x & (\text{tan-chord th} \\ \hat{A} = x & (\text{corr } \angle \text{'s; BD} \parallel \text{AO}) \end{array} $	√ S √SR √S	(3)
10.3	$\hat{A} = \hat{E} = x$ Converse $\angle's$ subtended by the same cord	√ Answer	(1)
10.4	$\hat{B}_2 + \hat{B}_3 = 90^\circ (\ \angle \text{ in semi } \bigcirc)$ $C\hat{B}E = 90^\circ + x$	$\frac{\sqrt{R}}{\sqrt{90^{\circ}} + x}$	(2)
10.5.1	In \triangle CBD and \triangle CEB: $\hat{C} = \hat{C}$ $\hat{B}_4 = \hat{E} = x$ $\hat{D}_2 = C\hat{B}E$ $\therefore \triangle$ CBD \triangle CEB ($\angle \angle \angle$)	√S √S	(2)
10.5.2	$\frac{CB}{CE} = \frac{BD}{EB} (\text{ triangles})$ $EB.CB = CE. BD$ $\hat{F}_1 = 90^\circ (\text{corr } \angle \text{'s; } BD AO)$ $BF = FE (\text{line from centre to mdpt of chord})$ $\therefore BE = 2EF$ $\therefore 2EF.CB = CE.BD$	✓S√R ✓SR ✓SR ✓replacing BE (5)	
10.5.3	$\frac{2EF}{CE} = \frac{BD}{BC} \text{ out of } 10.4$ But Δ BCD Δ ACO ($\angle \angle \angle \rangle$) $\therefore \frac{BD}{AO} = \frac{BC}{AC}$ $\frac{BD}{BC} = \frac{AO}{AC}$	\sqrt{S} \sqrt{SR} \sqrt{S}	
	$\left \frac{2EF}{CE}\right = \frac{AO}{AC}$	(4)	