

# EDUCATION

## VHEMBE EAST DISTRICT

# Downloaded from testpapers.co.za

NATIONAL

SENIOR CERTIFICATE

**GRADE 11** 



This question paper consists of 6 pages

#### INSRUCTIONS AND INFORMATION

## READ THE FOLLOWING INSTRUCTIONS CAREFULLY BEFORE ANSWERING THE QUESTIONS.

- 1. This question paper consists of 5 questions. Answer ALL the questions.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining the answers.
- 3. An approved scientific calculator (non-programming and non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 5. Diagrams are NOT necessary drawn to scale.
- 6. Number the answers correctly according to the numbering system **used** in this question paper.
- It is in your own interest to write legibly and to present the work neatly.

| 1.1. | Solve for $x$ in each of the following:                                                  |     |
|------|------------------------------------------------------------------------------------------|-----|
|      | 1.1.1. $x^2 + x - 12 = 0$                                                                | (3) |
|      | 1.1.2. $\sqrt{2x+1} = x-1$                                                               | (5) |
|      | 1.1.3. $2^{x\sqrt{x}} = 2^{27}$                                                          | (4) |
|      | 1.1.4. $x^2 - 2x - 8 < 0$                                                                | (3) |
| 1.2. | Given: $f(x) = 5x^2 + 6x - 7$                                                            |     |
|      | 1.2.1. Solve for x if $f(x) = 0$ (correct to TWO decimal places).                        | (4) |
|      | 1.2.2. Hence, or otherwise, calculate the value of <i>d</i> for which $x^2 + 6x - d = 0$ | = 0 |
|      | has equal roots                                                                          | (3) |
| 1.3. | Solve for $x$ and $y$ simultaneously:                                                    |     |

$$x - 2y = -3$$
 and  $xy = 20$  (6)

[28]

## **QUESTION 2**

| 2.1. | The solut | ion to a quadratic equation is $x = \frac{3 \pm \sqrt{4-8p}}{4}$ where $P \in \mathbf{Q}$ . |     |
|------|-----------|---------------------------------------------------------------------------------------------|-----|
|      | Determin  | the values of $p$ such that:                                                                |     |
|      | 2.1.1.    | Theoots of the equation are equal                                                           | (2) |
|      | 2.1.2.    | The roots of the equation are non-real                                                      | (2) |
| 2.2. | Given     | $\sqrt{5-x} = x+1$                                                                          |     |
|      | 2.2.1.    | Without solving the equation, show that the solution to the above                           |     |
|      |           | equation lies in the interval $-1 \le x \le 5$ .                                            | (3) |

- 2.2.2. Solve the equation. (5)
- Without any further calculations, solve the equation  $-\sqrt{5} x = x + 1$ . (1) 2.2.3.

[13]

| 3.1. | Consider                   | the following number pattern: 4; 9; 14;                        |     |
|------|----------------------------|----------------------------------------------------------------|-----|
|      | 3.1.1.                     | Write down the next two terms of the pattern.                  | (2) |
|      | 3.1.2.                     | Determine the expression for the $n^{th}$ term of the pattern. | (2) |
|      | 3.1.3.                     | Determine if 1099 is a term of the number pa ern.              | (3) |
| 3.2. | Consider                   | the following quadratic number pattern: 6; 10; 18;             |     |
|      | 3.2.1.                     | Write down the following two terms of the pattern.             | (2) |
|      | 3.2.2.                     | Determine the equation of the general term in the form:        |     |
|      |                            | $T_{n=an^2+bn+c}$                                              | (4) |
|      | 3.2.3.                     | Calculate the value of $T_{12}$                                | (2) |
|      | 3.2.4.                     | What term of the pattern will have a value of 766?             | (4) |
| 3.3. | A certain                  | number pattern has the following properties:                   |     |
|      | • $T_{1=k}$                |                                                                |     |
|      | • <i>T</i> <sub>2=14</sub> |                                                                |     |
|      | • $T_4 = 7$                | $7 T_1$                                                        |     |
|      | • T <sub>3</sub> - T       | $T_2 = 10$                                                     |     |
|      | Determi                    | ne the value of <i>k</i> .                                     | (5) |

[24]

(5)

(5)

(6)

[16]

## **QUESTION 4**

The diagram represents the functions  $f(x) = ax^2 + bx + c$  and g(x) = mx + k



### **QUESTION 5**

4.1.

4.2.

4.3.

| Given  | $f(x) = \frac{-3}{x+2} + 1$ and $g(x) = 2^{-x} - 4$ |   |                  |
|--------|-----------------------------------------------------|---|------------------|
| 5.1.   | Determine <i>f</i> (-3)                             |   | (2)              |
| 5.2.   | Determine $x$ if $g(x) = 4$                         |   | (3)              |
| 5.3.   | Write down the asymptotes of $f(x)$                 |   | (2)              |
| Copyri | ght reserved                                        | 5 | Please turn over |

|               |                                                                                             | [19] |
|---------------|---------------------------------------------------------------------------------------------|------|
| 5. <b>7</b> . | If it is given that $f(-1) = g(-1)$ , determine the values of $x$ for which $g(x) \ge f(x)$ | (3)  |
|               | intercepts with the axes and any asymptotes.                                                | (4)  |
| 5.6.          | Sketch the graphs of $f$ and $g$ on the same system of axes. Clearly show ALL the           |      |
| 5.5.          | Determine the coordinates of the $x$ and $y$ - intercepts of $f$                            | (4)  |
| 5.4.          | Write the range of <i>g</i>                                                                 | (1)  |

## **TOTAL: 100**



# EDUCATION

## VHEMBE EAST DISTRICT

NATIONAL SENIOR CERTIFICATE

**GRADE 11** 

MATHEMATICS P1 MEMORANDUM

**JUNE 2022** 

**MARKS: 100** 

TIME: 2 hours

#### NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking memorandum.
- Assuming values/answers in order to solve a problem is unacceptable.

| 1.1.1 | $x^{2} + x - 12 = 0$<br>(x + 4)(x - 3) = 0<br>x = -4 or x = 3                                                                                 | *<br>*<br>* | factors<br>answer<br>answer<br>(3)                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------|
| 1.1.2 | $\sqrt{2x + 1} = x - 1$<br>$2x + 1 = (x - 1)^{2}$<br>$2x + 1 = x^{2} - 2x + 1$<br>$x^{2} - 4x = 0$<br>x(x - 4) = 0<br>x = 0  or  x = 4<br>n/a |             | squaring both sides<br>standard form<br>factors<br>answer<br>x = 4 (correct selection)<br>(5) |
| 1.1.3 | $2^{x\sqrt{x}} = 2^{27}$ $2^{x\frac{3}{2}} = 2^{27}$ $x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 9$                                    | *<br>*<br>* | $2x^{\frac{3}{2}}$ $x^{\frac{3}{2}} = 27$ Raise both sides to $\frac{2}{3}$ Answer (4)        |
| 1.1.4 | $x^{2} - 2x - 8 \le 0$<br>(x - 4)(x + 2) < 0<br>-2 < x < 4 OR/OF x \in (-2; 4)                                                                | *<br>*<br>* | (x-4)(x+2) < 0<br>Critical values<br>Inequalities (3)                                         |

1.2.1 
$$5x^2 + 6x - 7 = 0$$
  
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$   
 $x = \frac{-6 \pm \sqrt{6^2 - 4(5)(-7)}}{2(5)}$   
 $= 0, 73 \text{ or } -1, 93$   
 $\checkmark$  Formula  
 $\checkmark$  Substitution  
 $\checkmark$  Answers  
 $\checkmark$  (4)

| 1.2.2 | $5x^2 + 6x - d = 0$                                    |     |                   |      |
|-------|--------------------------------------------------------|-----|-------------------|------|
|       | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$               | ~   | Substitution      |      |
|       | $\chi = \frac{-6 \pm \sqrt{6^2 - 4(5)(-d)}}{2}$        | ~   | 36 + 20d = 0      |      |
|       | 36 + 20d = 0                                           | ✓   | Answer            |      |
|       | $d = -\frac{9}{5}$                                     |     |                   | (3)  |
|       | <b>OR</b> for equal roots: $\Delta = 0$                |     | Substitution      |      |
|       | $\Delta = b^2 - 4ac$<br>= (6) <sup>2</sup> - 4(5)(- d) | ✓ ✓ | 36 + 20d = 0      |      |
|       | $36 + 20d = 0  d = -\frac{9}{5}$                       | ~   | answer            |      |
|       |                                                        |     |                   | (3)  |
|       | $\mathbf{OR}$ $5x^2 + 6x - d = 0$                      |     |                   |      |
|       | $x^2 + \frac{6x}{5} = \frac{d}{5}$                     | ✓   | completing the sq | uare |
|       | $(x+\frac{3}{5})^2 = \frac{d}{5} + \frac{9}{25}$       |     |                   |      |
|       | $=\frac{5d+9}{25}$                                     | 1   | 5d + 9 = 0        |      |
|       | For equal roots $\frac{5d+9}{25} = 0$                  | , · | AllSwei           | (3)  |
|       | $\therefore = \frac{-9}{5}$                            |     |                   |      |
|       |                                                        |     |                   |      |
|       |                                                        |     |                   |      |

| 1.3 | x = 2y - 3 (1)                                                                                                                         | ✓ Making $x$ the subject                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|     | xy = 20(2)<br>Substitute (1) into (2):<br>(2y - 3)y = 20                                                                               | ✓ Substitution                                                  |
|     | $2y^2 - 3y - 20 = 0$                                                                                                                   | $\checkmark$ Standard form                                      |
|     | (2y+5)(y-4) = 0                                                                                                                        | ✓ Factors                                                       |
|     | $y = -\frac{5}{2}$ or $y = 4$                                                                                                          | $\checkmark y - values$                                         |
|     | $x = -\overset{2}{8} \text{ or } x = 5$                                                                                                | $\checkmark x - values$ (6)                                     |
|     | x + 3 = 2y                                                                                                                             | ✓ Making y the subject                                          |
|     | $y = \frac{x+3}{2}$ (1)<br>xy = 20(2)                                                                                                  | ✓ Subst                                                         |
|     | Substitute (1) into (2) :                                                                                                              | <ul><li>✓ Standard form</li><li>✓ Factors</li></ul>             |
|     | $x\left(\frac{x+3}{2}\right) = 20$                                                                                                     | $\checkmark$ x – values                                         |
|     | $x^{2} + 3x = 40$<br>$x^{2} + 3x - 40 = 0$<br>(x + 8)(x - 5) = 0                                                                       | $\checkmark y - values$ (6)                                     |
|     | x = -8 or $x = 5$                                                                                                                      | <ul><li>✓ Making y the subject</li><li>✓ Substitution</li></ul> |
|     | $y = \frac{5}{2} \text{ or } y = 4$                                                                                                    | <ul><li>✓ Standard form</li><li>✓ Factors</li></ul>             |
|     | x - 2y = -3 (1)                                                                                                                        |                                                                 |
|     | $y = \frac{20}{2}$ (2)<br>Substitute (2) into (1)                                                                                      | ✓ $x - values$<br>✓ $y - values$ (6)                            |
|     | x - 2(20) = -3<br>x2 - 40 = -3x<br>x2 + 3x - 40 = 0<br>(x + 8)(x - 5) = 0<br>x = -8  or  x = 5<br>$y = -\frac{1}{2} \text{ or } y = 4$ |                                                                 |
|     | OR                                                                                                                                     |                                                                 |

| x - 2y = -3(1)                                                     |                                                             |
|--------------------------------------------------------------------|-------------------------------------------------------------|
| $x = \frac{20}{y} \qquad \dots \dots (2)$ Substitute (2) into (1): | <ul> <li>✓ Making x the subject</li> <li>✓ Subst</li> </ul> |
| $\frac{20}{y} - 2y = -3$                                           | ✓ Standard form                                             |
| $20-2y^2 = -3y$                                                    | ✓ Factors                                                   |
| $0 = 2y^{2} - 3y - 20$<br>0 = (2y + 5)(y - 4)                      | $\checkmark$ y values                                       |
| $y = -\frac{5}{2}$ or $y = 4$                                      | • $x$ values (6)                                            |
| x = -8 or $x = 5$                                                  | [28]                                                        |
|                                                                    |                                                             |

| 211   | A  QD = 0                         |                     | A = 0 - 0            |
|-------|-----------------------------------|---------------------|----------------------|
| 2.1.1 | 4 - 6P = 0                        |                     | 4 - 6F = 0           |
|       | -8P = -4                          |                     |                      |
|       |                                   | ✓                   | Answer               |
|       |                                   |                     |                      |
|       | $P = \frac{1}{2}$                 |                     |                      |
|       |                                   |                     |                      |
|       |                                   |                     | (2)                  |
| 2.1.2 | 4 - 8p < 0                        | <ul><li>✓</li></ul> | 4 - 8p < 0           |
|       | L L                               |                     | ·                    |
|       | 1                                 |                     | Answor               |
|       | $ p > \frac{1}{2}$                | •                   | Allswei              |
|       |                                   |                     |                      |
|       |                                   | (2)                 |                      |
| 2.2.1 | $\sqrt{5-x} = x+1$                | ✓                   | $5-x \ge 0$          |
|       | $5 - r > 0$ and $r \pm 1 > 0$     | ✓                   | r + 1 > 0            |
|       | $5-x \ge 0$ and $x+1 \ge 0$       |                     | $\lambda + 1 \leq 0$ |
|       | $x \le 5$ and $x \ge -1$          | •                   | Allu                 |
|       | Hence $-1 \le x \le 5$            |                     |                      |
|       |                                   |                     | (3)                  |
| 2.2.2 | $5 - x = x^2 + 2x + 1$            | ✓                   | Square both sides    |
|       | $r^2 + 3r - 4 = 0$                | ✓                   | Standard form        |
|       | (x + 4)(x - 1) = 0                |                     | Factors              |
|       | (x+4)(x-1) = 0                    |                     |                      |
|       | x = -4 or $x = 1$                 | <b>v</b>            | Answers              |
|       |                                   | ✓                   | Selection of 1       |
|       | Since $-1 < x < 5$ . $x = 1$ only |                     |                      |
|       |                                   | (5)                 |                      |
| 223   | x = -A                            | √                   | Answer               |
| 2.2.5 |                                   |                     |                      |
|       |                                   |                     | (1)                  |
|       |                                   |                     |                      |
|       |                                   |                     | [13]                 |

| 3.1.1 | 19;24                                                         | $\checkmark$          | 19                            |     |
|-------|---------------------------------------------------------------|-----------------------|-------------------------------|-----|
|       |                                                               | <ul> <li>✓</li> </ul> | 24                            |     |
|       |                                                               |                       |                               | (2) |
| 3.1.2 | $T_n = 5n - 1$                                                | ✓                     | 5n - 1                        |     |
|       |                                                               |                       |                               | (2) |
| 3.1.3 | $T_n = 1099$                                                  | ✓                     | Equating                      |     |
|       | 5n - 1 = 1099                                                 | <ul> <li>✓</li> </ul> | Simplification                |     |
|       | 5n = 1100                                                     |                       | 5n = 1100                     |     |
|       | n = 220                                                       | <ul> <li>✓</li> </ul> | Answer                        | (3) |
|       | $\therefore T_{220} = 1099  \therefore$ it is in the sequence |                       |                               |     |
| 3.2.1 | 30;46                                                         | ✓                     | 30                            |     |
|       |                                                               | ✓                     | 46                            | (2) |
| 3.2.2 | $T_n = an^2 + bn + c$                                         | ✓                     | Second difference $= 4$       |     |
|       | 2a = 4                                                        | ✓                     | <i>a</i> = 2                  |     |
|       | $\therefore a = 2$                                            |                       |                               |     |
|       | 3a + b = 4                                                    |                       |                               |     |
|       | $\therefore 3(2) + b = 4$                                     | ✓                     | b = -2                        |     |
|       | $\therefore b = -2$                                           |                       |                               |     |
|       | a + b + c = 6                                                 |                       |                               |     |
|       | 2 - 2 + c = 6                                                 | <ul> <li>✓</li> </ul> | c = 6                         |     |
|       | c = 6                                                         |                       |                               | (4) |
|       | $\therefore T_n = 2n^2 - 2n + 6$                              |                       |                               |     |
| 3.2.3 | $T_{12} = 2(12)^2 - 2(12) + 6$                                | ✓                     | Correct substitution in $T_n$ |     |
|       | = 270                                                         | <ul> <li>✓</li> </ul> | Answer                        | (2) |
|       |                                                               |                       |                               |     |
| 3.2.4 | $T_n = 766$                                                   | ✓                     | Equating                      |     |
|       | $2n^2 - 2n + 6 = 766$                                         | ✓                     | Standard form $= 0$           |     |
|       | $2n^2 - 2n + 760 = 0$                                         | <ul> <li>✓</li> </ul> | Factors                       |     |
|       | $n^2 - n - 380 = 0$                                           |                       |                               |     |
|       | (n-20)(n+19) = 0                                              | <ul> <li>✓</li> </ul> | <i>n</i> = 20                 | (4) |
|       | n = 20 : it is term number 20                                 |                       |                               |     |
| 33    | $T_1 \cdot T_2 \cdot T_3 \cdot T_1$                           | ✓                     | First difference              |     |
| 0.0   | $k = 1A = 2A \cdot 7k$                                        | ✓ ×                   | Second differences            |     |
|       | -4 + k = 7k - 24                                              | ✓                     | Equating                      |     |
|       | 6k = 30                                                       | ✓                     | 6k = 30                       |     |
|       | K = 5                                                         | ✓                     | Answer                        | (5) |
|       |                                                               |                       |                               | (-) |
|       |                                                               |                       | [24]                          |     |

| 4.1 | $y = a(x - x_1)(x - x_2)$                      |              |                    |
|-----|------------------------------------------------|--------------|--------------------|
|     | y = a(x - (-2))(x - 4)                         |              |                    |
|     | y = a(x+2)(x-4)                                |              |                    |
|     | Substituting (0 ; -16), we have :              |              |                    |
|     | -16 = a(0+2)(0-4)                              | $\checkmark$ | Substitution       |
|     | -16 = -8a                                      | $\checkmark$ | Value of <i>a</i>  |
|     | 2 = a                                          | ,            |                    |
|     | Substituting 2 for a : $y = 2(x + 2)(x - 4)$   | ✓            | Substitution &     |
|     | $y = 2(x^2 - 2x - 8)$                          | /            | Simplification     |
|     | $y = 2x^2 - 4x - 16$                           | <b>v</b>     | Value of <i>D</i>  |
|     | $\therefore a = 2, \qquad b = -4,  c = -16$    | v            | value of $C$       |
| 4.2 | The points (-2 : 0)(0 : -8) lie on g           |              | (3)                |
|     |                                                |              |                    |
|     | $m - \frac{y_2 - y_1}{y_1 - y_1}$              | $\checkmark$ | Substitution       |
|     | $m = \frac{1}{x_2 - x_1}$                      |              |                    |
|     | -8 - 0                                         | 1            | Cradient           |
|     | $m = \frac{1}{0 - (-2)}$                       | •            | Gladient           |
|     | с ( <u>-</u> )                                 |              |                    |
|     | = -4                                           | $\checkmark$ | Value of c         |
|     | $\therefore y = -4x + c$                       | $\checkmark$ | Equation of g      |
|     | Substituting (0; -8), we have $: -8 = -4(0) +$ |              |                    |
|     | С                                              |              | (4)                |
|     | $\therefore -8 = c$                            |              |                    |
|     | $\therefore g(x) =$                            |              |                    |
|     | -4x - 8                                        |              |                    |
| 4.3 | At A, $2x^2 - 4x - 16 = -4x - 8$               | $\checkmark$ | Equating equations |
|     | $2x^2 - 8 = 0$                                 |              |                    |
|     | $x^2 - 4 = 0$                                  | ,            |                    |
|     | (x-2)(x+2) = 0                                 | <b>v</b>     | Factorization      |
|     | x = 2  or  x = -2                              | <b>v</b>     | Values of <i>x</i> |
|     | y = 4(2) - 8 $y = -4(-2) - 8$                  | v            | Substitution       |
|     | y = -8 - 8 or $y = 8 - 8$                      |              |                    |
|     | y = -10 or $y = 0$                             | $\checkmark$ | v value            |
|     | x y = -10<br>x A (2 - 16)                      | ✓            | Coordinate of A    |
|     | ·· A (2, -10)                                  |              | (6)                |
|     |                                                |              |                    |
|     |                                                |              | [15]               |

| QUES | TION 5                                                                          |                                                                  |
|------|---------------------------------------------------------------------------------|------------------------------------------------------------------|
| 5.1  | $f(-3) = \frac{-3}{-3+2} + 1$                                                   | ✓ Substitution<br>✓ answer                                       |
|      | = 4                                                                             | (2)                                                              |
| 5.2  | $4 = 2^{-x} - 4$<br>8 = 2 <sup>-x</sup><br>2 <sup>3</sup> = 2 <sup>-x</sup><br> | ✓ Substitution<br>✓ Raise to exponent<br>✓ $x - value$<br>(3)    |
| 5.3  | x = -2 $y = 1$                                                                  | $\checkmark x \text{ values } \& \\ \checkmark y \text{ value} $ |
| 5.4  | $y \ge -4$                                                                      | ✓ Answer (1)                                                     |
| 5.5  | $f(x) = \frac{-3}{x+2} + 1$                                                     | ✓ Substitution                                                   |
|      | $0 = \frac{-3}{x+2} + 1$                                                        | ✓ (1;0)                                                          |
|      | $-1 = \frac{-3}{x+2}$                                                           | Multiplication                                                   |
|      | -1(x+2) = -3 -x - 2 = -3                                                        | $\checkmark x - value$                                           |
|      | x = 1                                                                           | ✓ $(0; -\frac{1}{2})$ or                                         |
|      | $y = \frac{-3}{0+2} + 1$                                                        | y — value                                                        |
|      | $y = -\frac{1}{2}$                                                              | (4)                                                              |

#### TERM 2: 2022

