

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

5.我就想到我就是我就是我就是我的,我就是我们的人,我们就是我们的人,我们就是我们的人,我们就会会看到我们的人。 "我就是我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就会现在一个人,我们就是我们的人,我们

PHYSICAL SCIENCE P2 (CHEMISTRY)

COMMON TEST

JUNE 2017

NATIONAL SENIOR CERTIFICATE

GRADE 11

MARKS:

100

TIME:

2 Hours

This question paper consists of 9 pages, 2 data pages and graph paper.

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Number the answers correctly according to the numbering system used in this question paper.
- 3. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 4. You may use a non-programmable calculator.
- 5. You may use appropriate mathematical instruments.
- 6. YOU ARE ADVISED TO USE THE ATTACHED DATA SHEET.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your FINAL numerical answers to a minimum to TWO decimal places.
- 9. Give brief motivations, discussions, et cetera where required.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write down only the letter (A-D) next to the question number (1.1-1.7) in the answer book, for example 1.8 D.

- 1.1 The shape of the SF₆ molecule is
 - A Pyramidal
 - B Octahedral
 - C Tetrahedral
 - D Trigonal Bipyramid

(2)

- 1.2 Aquatic animals obtain their oxygen that is dissolved in water. The type of intermolecular forces that are found between water and dissolved oxygen is called
 - A Hydrogen bonds
 - B Dispersion forces
 - C Ion-induced dipole forces
 - D Dipole-induced dipole forces

(2)

1.3 A thin tube, opened at both ends is placed in liquid A as shown in the sketch below. It is observed that liquid A rises in the tube.

The reason for this observation is

- A Liquid A has no surface tension.
- B Liquid A has high surface tension.
- C The adhesive forces are less than the intermolecular forces.
- D The adhesive forces are greater than intermolecular forces.

(2)

1.4 The behaviour of a real gas is approximately the same as that of an ideal gas under the following conditions of temperature and pressure:

Temperature	Pressure	
Low	Low	***************************************
Moderate	High	.,,.,
Low	High	
Moderate	Low	
	Low Moderate Low	Low Low Moderate High Low High

(2)

1.5 A cubic container is filled with a gas which exerts pressure **p**. What will the pressure exerted by the same amount of this gas be if the gas is placed in a cubic container whose side is half of that of the original container?

A 1/8 p

B 1/4 p

C 4p

D 8p

(2)

1.6 The number of hydrogen atoms in 1 mole of NH₄OH is

A 5

B 6.022×10^{23}

C $4 \times 6.022 \times 10^{23}$

D $5 \times 6.022 \times 10^{23}$

(2)

1.7 A solution of HCl has a concentration **C**. A learner pours 25 cm³ of this solution into a 100 cm³ volumetric flask and adds water to make a 100 cm³ solution.

The final concentration of the new solution is:

A 1/4 C

B 3/4 C

C 0,01 **C**

D 4 C

(2)

[14]

2.1 Given the table below answer the questions that follow:

Bond	Bond energy (k·J·mol ⁻¹)	Bond Length (pm)
0 – H	463	96 .
N – H	389	100.8
C – C	348	154

	2.1.1	Define bond length.	(2)
	2.1.2	From the data provided, what is the relationship between bond length and bond energy?	(2)
	2.1.3	Calculate the energy required to break all the bonds in one mole of NH ₃ .	(2)
2.2	Hydro	ogen and carbon atoms react to form methane.	
	2.2.1	Name the type of bond between the hydrogen and carbon atoms.	(1)
	2.2.2	Draw the Lewis Structure for CH ₄ .	(2)
	2.2.3	Calculate the difference in electronegativity between carbon and hydrogen atoms.	(1)
	2.2.4	Is CH₄ a POLAR or a NON-POLAR molecule? Explain.	(2) [12]

Learners conduct an experiment to measure the rate of evaporation of three liquids under the same conditions. The learners placed 20 cm³ of cooking oil, 20 cm³ of water and 20 cm³ of chloroform in separate beakers. All three beakers were left exposed for 5 hours. The experiment was repeated 5 times under identical conditions. The average results obtained are shown in the graph below.

(2)3.1 Define vapour pressure. (2)Write down an investigative question for this experiment. 3.2 (1) Name a controlled variable. 3.3 Which substance has the lowest vapour pressure? 3.4 (2)Give a reason for your answer. Calculate the rate of evaporation of chloroform in cm³ hour⁻¹. (2)3.5 (2)Is the experiment a fair test? Give a reason for your answer. 3.6 Chloroform and water are both solvents, but their evaporation rates differ. 3.7 (3)Explain this observation.

[14]

A learner investigates the relationship between volume and pressure of an enclosed DIATOMIC gas at room temperature. The following results were recorded by the learner.

Pressure (p) (kPa)	Volume (v) (cm³)	$\frac{1}{v}$ (cm-3)
100	50	0.02
150	33	0.03
200	25	0.04
250	20	0.05

4.1	Name the law being investigated.	(1)
4.2	Draw a graph of pressure vs $\frac{1}{v}$ on the attached GRAPH PAPER.	(4)
4.3	What conclusion could be drawn from the graph in question 4.2?	(2)
4.4	Name ONE factor that must be kept constant in this investigation.	(1)
4.5	Assume that there is a deviation in the graph at pressures greater than 250 kPa. On the same set of axes show how the graph of pressure vs 1/v will appear at pressures higher than 250 kPa.	(1)
4.6	Fully explain the reason for the deviation in question 4.5.	(2) [11]

QUESTION 5

A gas cylinder containing deodorant (perfume) has a warning that it should not be exposed to excessive heat, as exposure to heat may lead to an explosion. The cylinder can withstand a maximum pressure of 120 kPa.

can withstand a maximum pressure of 120 kPa. 5.1 Name the law that is described in the above statement. (1)The container is stable at 25[□]C and 101.3 kPa. Determine the minimum 5.2 temperature that could lead to the cylinder exploding. (4)5.3 Will this cylinder explode at 100 ^{°C} and 101.3 kPa? Write down only YES or NO. (1)5.4 Explain your answer to question 5.3. (2)[8]

Samples of impure oxalic acid crystals ($H_2C_2O_4 \cdot 2H_2O$) are obtained from the technician of a laboratory. The samples are placed in small packets of 0.350 g each. These samples are used to prepare standard solutions of oxalic acid.

- 6.1 Define a standard solution. (2)
- One packet of impure H₂C₂O₄·2H₂O was used to prepare a 250 cm³ solution. After analysis, the concentration of the prepared solution was found to be 0.01 mol·dm⁻³.
 - Determine mass of $H_2C_2O_4 \cdot 2H_2O$ in the sample. (4)
- 6.3 Calculate the mass of the impurities in each sample. (2)
- 6.4. What is the percentage purity of the used sample? (3)

[11]

QUESTION 7

Pure CaCO₃ powder was dropped into a test tube containing a 0,12 mol.dm⁻³ HCℓ solution of unknown volume. The following reaction took place:

$$CaCO_{3(s)}$$
 + $2HC\ell_{(aq)}$ \rightarrow $CaC\ell_{2(aq)}$ + $CO_{2(q)}$ + $H_2O_{(\ell)}$

Upon completion of the reaction, it was found that:

- 1,146 dm³ of CO₂ was produced at STP.
- 110 cm³ of HCl, with a concentration of 0,09 mol·dm⁻³ remained in the beaker.
- 7.1 Explain what is meant by an excess reactant. (2)
- 7.2 Identify the excess reactant in the above reaction. (1)
- 7.3 Calculate the number of moles of CO₂ produced. (3)
- 7.4 Calculate the initial mass of $HC\ell_{(aq)}$ that was present in the test tube. (6)
- 7.5 5,68 g of CaCO₃ was added in the reaction vessel to start the reaction.
 - 7.5.1 Calculate the theoretical yield of CO₂ in grams. (4)
 - 7.5.2 Calculate the percentage yield of CO₂. (3)

[19]

7,5340 g of pure ethylene glycol was analysed and was found to contain 2,9164 g of carbon, 0,7291 g of hydrogen, and 3,8885 g of oxygen

- 8.1 Explain what is meant by the **empirical formula** of a compound. (2)
- 8.2. Determine the empirical formula of ethylene glycol. (6)
- 8.3 If the molar mass of ethylene glycol is 62 g·mol⁻¹, what is its molecular formula? (3)

[11]

TOTAL: 100 MARKS

PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/ <i>NAAM</i>	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
<i>Molêre gaskonstante</i> Molar gas constant	R	8.31 J·K ⁻¹ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ⁰	273 K .
Avogádro's Constant	N of/or N _A	6.022x10 ⁻²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

	c=	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
$n=\frac{m}{M}$	or/ <i>of</i>	pV=nRT
	$c = \frac{m}{MV}$	·

Common Test June 2017 11

NSC

SL
JIC TABLE OF ELEMEN
닖
느
щ
Z B
F
ğ
20
<u>С</u> Ш
H
ABLE
and the last

	_		υ			ധ		~								73 .			····			_		
20	3	2	¥	4	7	Ž	7	18	4	4	36	× ×	ά	5 4	ر پر >	Ž :	13	80 1	Ž			7.1		175
17	3				တ	ഥ 0'⊅		17	3,0		35	8,5 g		200	; '2		177		S, At			70	\ \ \ \	173
9	Ŝ				ထ	3,5	16	16		32	34		70	52		ב ל	971	× (٦ 0			69	<u>ا</u>	169
15	3					Z	14	15	Ω.	33	33	ASA	7.5	2, 5	2	5 5	771	S		503		89	Ľ.	167
4	<u> </u>					3°0 3°0	12				32		73	20		5 5	2 2	70		707		29	C H	165
€ €					Ŋ	2,0 2,0	7	5	1,5 Ae 1,8	27	31	9,1 Ga 8,1	70	49	8' 2 2'	= T	2 6	- c	۱٬ ۲٬	407				163
12				L				••••••	<i>a v</i>		30	9'L	65	48	*********	2 5	71.0	*********		107		65	<u>q</u>	159
/											53	3 6'1		47) <u> </u>	3 0	? <	, t	131		54	gg	157
6						Symbol	Simbool		mass	nassa		Z 8'1		46		106	200	2 Å	7 07	251		63	Д Ш	152
တ			number		**************************************	(S)	7	5	e atomic	шоота	27		59	45	Z'3		77	<u>.</u>	107	701		62	Sm	150
œ			Atomic nu	•	29	ට 6'1		•	ate felativ	Mannia	26 75 75	8,1 Ja	56	44	2,2 2	107	76	C	190	201		61	Pm	
_				L		↑	teit	j .	Approximate felative atomic mass	perionellae leiutiewe atoommassa	22		55	43	9,1 7		75	20	186	2		09	Š	144
9			EL			Electronegativity	Elektronegatiwiteit	•	a. a.		24		52		8,1 NO	96	74	3	184			29	à	141
32			KEY/ <i>SLEUTEL</i>		ĩ	Electr	Elektro			00	73	9,1 >	51			92	73	<u>~</u>	184			28	ဗီ	140
4			₹							6	7	 	48		17 T	91	72	¥ 9'I	-		L.	***********	********	
က									,	70	7 (လွ	45	33	>	89	22			89	۷۷	?		
7 E	`			4	. D		2 5		ກ ຂ	47	9 (g;	40	χ Υ		88	26	Ва		88		226		
			······································		gʻ		-	. (°		2 0		ا' <u>ا</u>	D .		0	(0		6'0 ഗ			6'(_	
- =	400	L'	7	(%)	0'		7	6	2 % 0	4 4		' 0	ς, ς		3'0	86	55	S ∠'0		8	<u>ن</u> ۲'(

70 Yb 173	102 No
69 Tm 169	101 Md
68 Er 167	100 Fm
67 Ho 165	99 Es
66 Dy 163	98 Cf
65 Tb 159	97 B K
64 Gd 157	96 Cm
63 Eu 152	95 Am
62 Sm 150	94 Pu
Pm G	88 Q
00 N 144 144	92 U 238
Pr 141	91 Pa

103 L

Please turn over

90 Th 232

NAME:

PHYSICAL SCIENCE P2

MARKING GUIDELINE

JUNE 2017

COMMON TEST

SENIOR CERTIFICATE NATIONAL

GRADE 11

100 MARKS:

2 hours TIME :

N.B. This marking guideline consists of 8 pages.

Physical Science P2

2 NSC-Grade 11-Marking Guideline

June 2017 Common Test

QUESTION 1

> × 8 7:

 \odot \Im $\overline{0}$ (2)

- \ \ \ \ \ 1.2
- // 0 1.3
- \ 0 4.
- \ \ 0 1.5
 - // 0 1.6
- A << 1.7

(2) [14]

(5) $\widehat{\mathbf{S}}$

QUESTION 2

- 2.1.1 Bond length is the average distance between the nuclei of two bonded atoms $^{<<}$ (2)
- (2 or 0)2.1.2 as the bond length increases, the bond energy decreases </

as the bond length decreases the bond energy increases </

- = 3× (N H) = 3×389 2.1.3 ∆H
- = 1 167kJ·mol⁻¹~

(2)

 Ξ \odot

- 2.2 2.2.1 Covalent bond
- 2.2.2
- I I : O : I I

>

- 2.2.3 $\Delta EN = 2.5 2.1 = 0.40 \checkmark$
- 2.2.4. Non-polar ✓, C H bonds are polar but the molecule is symmetrical ✓

 Ξ 2

OR CH4 is tetrahedral in shape.

[12]

- <u>3</u> (2 or 0)
- 3.2 How does the nature of a liquid affect the rate of evaporation? $\checkmark\checkmark$

 \Im

유

What is the relationship between different types of liquids and the rate of evaporation of these liquids? $\checkmark \checkmark$

(one mark for identifying the two variables, and one mark for framing it into a question).

- 33 Volume ✓ or Temperature or Atmospheric pressure.
- Cooking oil, it does not change into vapour easily

3

3

ა ა

3.4

$$rate = \frac{\Delta V}{\Delta t}$$

$$= \frac{7 - 20}{5}$$

$$= -2.6 \text{ cm}^3 \text{ hr}^- \checkmark$$

3.6 yes ✓, only one variable was changed✓

 \mathfrak{D}

- 3.7 Water is held by strong hydrogen bonds while chloroform has
- Therefore, water requires more energy to vapourize than chloroform.

[14]

<u>ω</u>

4.6 4.5

weak dipole-dipole forces / van der Waal forces/

Physical Science P2

QUESTION 4

Boyle's law

NSC-Grade 11-Marking Guideline

June 2017 Common Test

 Ξ

4

- 42 Figure 1: Graph of pressure vs inverse of volume

4.3 Pressure is inversely proportional to the volume.

 \mathfrak{D}

Pressure (kPa) 150

200

250

 \mathfrak{D}

The inverse of volume is directly proportional to pressure. $\checkmark\checkmark$

- 44 Temperature / Quantity of gas or number of moles of gas OR mass of gas. \exists
- on the Graph sheet/ Ξ
- At high pressures, the volume of the gas is reduced themselves cannot be ignored. < as predicted by Boyle's Law, because the space occupied by the particles Increasing the pressure further does not result in a decrease in the volume, \checkmark 2
- [11]

Copyright Reserved

Physical Science P2

June 2017 Common Test 6 NSC-Grade 11-Marking Guideline

QUESTION 5

5.1 Gay-Lussac's law/

 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

 $\frac{101.3 \times 10^{3} \checkmark}{2000} = \frac{120 \times 10^{3}}{1000}$

T = 353.01 K

Yes ✓

The temperature (273+100) $\overline{373K}$ \checkmark is greater than the minimum temperature, hence the cylinder would explode

QUESTION 6

(2 or 0)6.1 A standard solution is a solution whose concentration is known precisely.

6.2

0.01 / 1... 126 x 0,250 / $c = \frac{m}{MV}$

m = 0,315g \checkmark

mass of impurities = 0.350 - 0.315 \checkmark = 0.035 g \checkmark

6.3

%purity = mass of pure substance mass of impure substance 6.4

 $= \frac{0.315}{0.350} \times 100\%$

√ %06 =

[11]

(3)

QUESTION 7

Excess reactant is that reactant that is left after the reaction is $complete \checkmark \checkmark$. 7.1

R

4 Ξ

(2 or 0)That reactant whose initial amount is greater than the amount that reacts. $\checkmark\checkmark$

 $\overline{\epsilon}$

것 7.2

7.3

 \equiv

3(2)

22,4 1,46

= 0,0512 mol \(\sqrt{}

3

CO₂ Ratio: HCI : 7.4

2x 0,0512 = 0,102 mol of HCl reacted.

No of mol of HCl in excess

4

C×V<

0,010 mol.

0,09 × 0,110×

0,102 + 0,010~

moles that reacted +

Initial moles of HCl =

(5)

0,112 mol

N×M Initial mass of HCl =

0.112 × 36.5 ×

4,088 gV

9

Copyright Reserved

Please Turn Over

Copyright Reserved

$$=\frac{5.68}{100}$$

7.5.2

%yield = $\frac{\text{actual}}{\text{theoretical}} \times 100\%$ \checkmark

 $= \frac{2.25}{2.4992} \times 100\%$ = 90.03%

4

(3) **[19]**

QUESTION 8

Physical Science P2

8,2

8.1 An empirical formula is the simplest atomic ratio of a molecule $\checkmark\checkmark$

(2) 6)

0	Option 1			
		C	Ι	0
	Mass (q)	2,9164	0.7291	3,8885
	Molar mass (q.mol ⁻¹)		1~	16
	$n = \frac{m}{M} \text{(mol)}$	4303 ✓	0.7291	0,24303 ✓
	Ratio	>	3 <	>

Empirical formula is CH₃OV

$\mathbf{-}$
Ū
ゴ
ō
Ž
N

PHON 2				
	C	I	0	
Percentage (%)	38.7097	9.6774	51.6129	
Mass (g)	38.7097	9.6774	51.6129	
Molar mass (g.mol ⁻¹)	12		16	
$n=\frac{m}{M}$ (mol)	3.2258 ✓	9.6774	3.2258	
Ratio	1	ω		_

Empirical formula is CH₃OV

M Molecular formula = integer ×M empirical formula

3

8. 3

ß

= integer × (12+16+3×1) ✓

Therefore: integer = $2\sqrt{}$

Molecular formula = C₂H₆O₂ ✓

[1]

TOTAL MARKS: [100]