Physical Sciences

NW/June 2017

Education and Sport Development

Department of Education and Sport Development Departement van Onderwys en Sportontwikkeling Lefapha la Thuto le Tlhabololo ya Metshameko

NORTH WEST PROVINCE

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES MEMORANDUM

JUNE 2017

MARKS: 150

This memorandum consists of 10 pages.

Copyright reserved

Please turn over

1.1	C√√	(2)
1.2	B√√	(2)
1.3	C√√	(2)
1.4	C√√	(2)
1.5	B√√	(2)
1.6	D√√	(2)
1.7	B√√	(2)
1.8	A√✓	(2)
1.9	A√✓	(2)
1.10	B√√	(2) [20]

2.1 Resultant of two or more vectors is a single vector that has the same effect as (2) the original vectors combined. $\checkmark\checkmark$

2.2

 $F_{2}y = 120 \sin 40^{\circ}$ =77,13 N√

=64,28 N√

Sum of vertical components of the force = 64,28-77,13

= -12,85 N√

NOTE: no mark for the equation

Horizontal component = F cos θ Horizontal component of force applied by Daniel $F_1x = 100 \cos 40^\circ$ =76,60 N√ Horizontal component of force applied by Thato $F_{2}x = 120 \cos 40^{\circ}$ =91.93 N√ Sum of horizontal components of the force =76,60 + 91,93

NOTE: no mark for the equation

Copyright reserved

(6)

 $(F_{res})^2 = 168,52^2 + (-12,85)^2 \checkmark$ = 168,01 N√ Direction of the resultant $\tan \theta = F_y/F_x$ tan θ =12,85/168,0✓ $\theta = 4.37^{\circ}$ Fres = 168,01 N 4,37° south of east or on a bearing of 94,37°

QUESTION 3

3.1	Weight of the truck = mg $F_g = 1500 \times 9.8 \checkmark$ = 14700 N \checkmark	(2)
32	Static frictional force is the force that opposes the tendency of motion of a	

Static frictional force is the force that opposes the tendency of motion of a 3.2 stationary object \checkmark relative to a surface. \checkmark Kinetic frictional force is the force that opposes the motion of a moving object \checkmark relative to a surface. \checkmark (4) [6]

QUESTION 4

4.1

(3)

(4) [12]

4.2 F_g = Normal force = mg cos θ $= 20 \times 9.8 \times \cos 20^{\circ}$ =184,18 N√ $f_k = \mu_k N$ $f_k = 0.7 \times 184.18^{\checkmark}$ = 128.93 N[√] $F_{gII} = mg \sin \theta$ = 20 x 9,8 x sin 20°√ = 67,04 N√ Take up the slope as positive $F_{net} = F_{app} - F_f - F_{gll}$ In order to move the trolley F_{net}≥0√ $0 \leq F_{app} - 128,93 - 67,04\checkmark$ F_{app} ≥ 195,97 N√ The minimum force that can be applied to the trolley \geq 195,97 N

(9) [12] Memorandum – Grade 11

QUESTION 5

5.1 Free body diagram for the engine free body diagram for the cart Т 10 N Т F_{net} = ma√ 10-T =1 x a ✓(1) $T = 0.5 x a \checkmark$ (2) Equation (1)+(2)10 = 1,5 aa = 6,67 m·s⁻² forward \checkmark (4) 5.2 Substitute 'a' in to equation (1) or (2) Or T = 0,5 x 6,67√ 10 -T =1 x 6,67√ T = 3,34 N√ T = 3,33 N√ Accept range 3,33 N to 3,34 N (2) [6] **QUESTION 6** 6.1 S. \checkmark The gravitational force is strongest when the objects are closer together.

- Or when the distance is smaller \checkmark . (2) 6.2 Q√ (1)
 - T. ✓ The radius 'r' has increase by a factor of '2' ✓ or ¼ th of gravitational force 6.3 at the surface of the Earth. ✓ (2)
 - 6.4 $F_g = mg$ 784 = m x 9,8√ m = 80 kq√ (2) [7]

- 7.1 $-432 \text{ kJ} \cdot \text{mol}^{-1} \checkmark$ (1)
- 7.2 74 pm√
- 7.3 Greater the bond length, smaller the bond energy \checkmark
- 7.4 Section 1-The atoms are far apart and their potential energy is close to 0 kJ·mol⁻¹. There is very little electrostatic attraction between the protons of one atom and electrons of the other atom. ✓

Section 2- As the atoms move closer to each other, the potential energy starts to decrease as the positive protons of one atom starts to exert an electrostatic force of attractions on the negative electrons of the other atom. \checkmark

Section 3 - Bonding takes place and the potential energy is the lowest for two atoms and the molecule is more stable. The forces of attraction and repulsion are equal to each other. \checkmark

Section 4- As the atoms are forced closer than bonding distance the forces of repulsion become much greater, the molecule become less stable and the (4) potential energy increases rapidly. \checkmark

- 7.5 Carbon dioxide is linear ✓ made up of two polar bonds arranged symmetrically, making the molecule non polar. ✓
 Water molecule is angular ✓ made up of two polar bonds arranged asymmetrically, making the molecule polar. ✓
- 7.6.1 Linear√

7.6.2 Trigonal bipyramidal√

[15]

(4)

(2)

(2)

(1)

(1)

8	1

Substance	Type of particles	Type of intramolecular force	Type of intermolecular force	Polar or non polar or none
NH ₄ Cl	ions√	ionic√	Coulomb forces√	none√
CCl ₄	molecules√	covalent√	van der Waals forces√	non polar√
NH ₃	molecules√	covalent√	hydrogen bonding√	polar√

(12)

Criteria	Marks
Axes correctly labelled with units	1
Correct scale on both axes	1
Points correctly plotted.	1

(3)

- 8.2.2 Boiling point increases from H₂S to H₂Te. ✓ London forces exist✓ between all of these molecules. The strength of London forces increases as molecular size increases. ✓ Therefore as the hydride molecules become bigger, more energy is needed to overcome the London forces. ✓ (4)
- 8.2.3 Hydrogen bonding ✓ that exists between water molecules is significantly stronger than London forces exist between other hydrides. ✓ (2)

[21]

9.1 The bending of light when it passes from one optical medium to another that (2) has a different optical density. $\checkmark\checkmark$

9.2.1
$$v = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1} \checkmark$$
 (1)

9..2.2
$$n = \frac{c}{\sqrt{v}} \sqrt{v}$$

 $n = \frac{3 \times 10^8}{1,97 \times 10^8} \sqrt{v} = 1,52 \sqrt{v}$
(3)

9.3

Note: Award full marks for labelling correct angle of incidence, angle of refraction and refracted ray inside the prism.

9.4	$n_1 \sin \theta_1 = n_2 \sin \theta_2 \checkmark$	
	1,33 sin 59º = n₂ sin 27⁰√	
	$n_2 = 2,51$	
	The unknown material is diamond ✓ (2,5 is more closer to 2,4)	(4)
		[14]

QUESTION 10

10.4	Huygens' Principle. \checkmark Every point on a wavefront acts as the source of secondary wavelets that spread out in the forward direction with the same speed as the wave. $\checkmark\checkmark$	(3)
10.3	Diffraction. \checkmark It is the ability of a wave to spread out in wavefronts as it passes through a narrow aperture or around a sharp edge. $\checkmark\checkmark$	(3)
10.2	A broad band of bright green light with alternating dark and green bands that become less intense as the light spreads away from the centre. $\checkmark\checkmark$	(2)
10.1	Light of a single frequency✓	(1)

[9]

(4)

	Physical Sciences	9 Memorandum – Gra	de 11	NW/June 2017	
QUESTION 11					
11.1.1	Pressure✓				(1)
11.1.2	Volume√				(1)
11.1.3	Temperature and numb	er of moles of the	gas√ (both)		(1)
11.2	How does the volume of gas and temperature Note: Indicating correct Relation in the fo	f a gas vary as pr remain constant? variables – one r rm of question – c	essure changes ✓ nark ne mark	✓ when the amount	(2)
11.3	Boyle's Law.√For a fix pressure of a gas is inv	ked amount of a ersely proportiona	gas at constan I to its volume. •	t temperature, the ✓✓	(3)
11.4	If the gas is obeying Bo $P_1V_1 = 198 \times 25,4 = 50$ $P_2V_2 = 158,6 \times 31,71 =$ $P_1V_1 = P_2V_2$, therefore Note: Credit full marks is a ratio.	yle's Law P₁V₁ =)29,2 ✓ = 5029,2 ✓ Boyle's Law is ob even though the	P₂V₂ ✓ eyed. conversions wer	e not done since it	(3)
11.5	P ₁ V ₁ = P ₃ V ₃ 5029,2 = 120 x V ₃ ✓ V ₃ = 41,91 cm ³ ✓ Note: Credit full marks is a ratio.	even though the	conversions wer	e not done since it	(2)

12.1 If the gas is an ideal, $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ at constant pressure $\frac{V_1}{T_1} = \frac{0.0546}{273} \checkmark$ = 0.0002 $\frac{V_2}{T_2} = \frac{0.0746}{373} \checkmark$ = 0.0002Since $\frac{V_1}{T_1} = \frac{V_2}{T_2} \checkmark$, so the gas is behaving like an ideal gas. (3)

- 12.2 Intermolecular forces are zero \checkmark and the particles in the gas have no (2) volume \checkmark
- 12.3 $\frac{V_1}{T_1} = \frac{V_3}{T_3}$ 0,0002

$$,0002 = \frac{V_3}{473} \checkmark$$

 $V_3 = 0,0946 \text{ cm}^3 \checkmark \text{ or } 9,46 \text{ x } 10^{-8} \text{ m}^3$

Note: Credit full marks even though the conversions were not done since it is a ratio. (2)

12.4.1

$$n = \frac{m}{M}$$

$$n (NH_4NO_3) = \frac{2.8}{80} \checkmark$$

$$n = 0.035 \text{ mol } \checkmark$$

$$1 \text{ mol of NH_4NO_3 gives 1 mole of N_2O and 2 moles of H_2O}$$

$$Number \text{ of moles of N_2O} = 0.035 \text{ mol} \checkmark$$

$$Number \text{ of moles of H_2O} = 0.07 \text{ mol} \checkmark$$

$$Total \text{ number of mols of gaseous products = 0.035 + 0.07}$$

$$0.105 \text{ mol} \checkmark$$
(5)

12.4.2 PV = nRT✓

 $P = \frac{0,105 \times 8,31 \times 344}{(1 \times 10^{-3})}$ = 300157,2 = 300,16 kPa \lambda

[15]

(3)