

Education and Sport Development

Department of Education and Sport Development Departement van Onderwys en Sportontwikkeling Lefapha la Thuto le Tlhabololo ya Metshameko

NORTH WEST PROVINCE

GRADE 11

PHYSICAL SCIENCES

JUNE 2017

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages and 3 data sheets

NSC - G

INSTRUCTIONS AND INFORMATION

- 1. Write your name on the ANSWER SHEET.
- 2. This question paper consists of TWELVE questions. Answer ALL the questions on the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, for example QUESTION 2.1 and QUESTION 2.2
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D

- 1.1 A brick slides on a rough horizontal surface. Which one of the following actions will increase the frictional force acting on the brick?
 - A Decreasing the surface area of contact
 - B Increasing the surface area of contact
 - C Putting a second brick on it
 - D Decreasing the mass of the brick

(2)

1.2 The graphs below show the relationship between the net force and the Acceleration for two masses P and Q.

Which one of the following statements is true?

- A The bodies have equal masses
- B Body P has a smaller mass
- C Body Q has a smaller mass
- D The mass does not affect the gradient of the graph (2)

1.3 Consider a man pressing a book against a wall with a force K as shown in the sketch below:

The reaction force to force K will be:

- A the force with which the wall presses on the book
- B the force with which the book presses on the wall
- C the force with which the wall presses on the man
- D the frictional force between the book and the wall

(2)

1.4 The gravitational force exerted by two identical metal spheres P and Q on each other can be represented as shown in the sketch below:

Which one of the following diagrams represent the force correctly if the mass of P is doubled?

1.5 The bond which involves the donation of electrons into an empty orbital is a/an-

- А Ionic bond В Dative covalent bond С Covalent bond D Metallic bond (2) 1.6 Adhesive forces are found in А surface tension В viscosity С hydrogen bonding D capillary action (2) 1.7 The liquid that exhibit the highest vapour pressure at 25 °C is: А water, boiling point 100 °C В ether, boiling point 34,6 °C С ethyl alcohol, boiling point 78,3 °C glycerin, boiling point 290 °C D (2) 1.8 A clear plastic bead has a critical angle of 40°. Light inside the bead strikes the surface with angle of incidence of 42°. At the surface... А all the light is reflected В all the light is transmitted to the air С the light travels along the boundary
 - D some light is reflected and some light is refracted (2)

1.9 Which one of the following graphs does not represent a gas relationship?

1.10 Which statement regarding the Kinetic Molecular theory of ideal gases is incorrect?

- A Gas molecules are in random motion
- B Gas molecules collide inelastically
- C The gas molecules occupy zero volume
- D Attractive and repulsive forces can be neglected (2)

(2) **[20]**

2.1 Daniel and Thato are pulling a cement block as shown in the sketch below. Daniel pulls with a force of 100N at a bearing of 50° and Thato pulls with a force of 120 N at a bearing of 130°.

- 2.1 Explain what is meant by resultant force? (2)
- 2.2 Calculate the magnitude of the sum of the vertical and horizontal components of the force applied by Daniel and Thato ? (6)
- 2.3 Calculate the magnitude and direction of the combined pulling force by adding the vector components. (4) [12]

Vusi was pushing a truck with a force of 100 N. The mass of the truck is 1500 kg and the truck is at rest.

3.1 What is the magnitude of the weight of the truck? (2)
3.2 Explain the difference between static and kinetic frictional force (4)

QUESTION 4

A supermarket built a ramp for their customers to push their fully laden trolleys to their parked cars in the roof parking area above the supermarket. They completed a survey and found that the average loaded trolley has a mass of 20 kg. The material they used for the ramp resulted in a coefficient of static friction of 0,7. The ramp is inclined at 20° as shown in the figure below.

	– • • • • • •	e 11 .1 e		(-)
41	Draw a labelled force dia	agram of all the forces.	acting on the trollev?	(3)
		agrain of an are refeed	adding on the honoy.	(0)

4.2 Calculate the minimum force a person must apply to push the trolley up the ramp (9)

[12]

[6]

[6]

QUESTION 5

A 10 N force is used to pull a toy train, which has an engine and another cart attached to it, as shown in figure below. The train engine has a mass of 1 kg and the cart has a mass of 500 g. The track is smooth, therefore there is no friction.

- 5.1 Calculate the acceleration of the train? (4)
- 5.2 Calculate the tension in the link between the train and the cart. (2)

QUESTION 6

An astronaut measures his weight on the Earth. As his spaceship travels away from the Earth, he measures the Earth's force of attraction on him at various stages. The table below indicates the forces of attraction acting on the man, though not in the same order as they were measured.

Study the table below and answer the following questions:

Point	Earth's attraction on astronaut(N)
Р	392
Q	98
R	588
S	784
Т	196

6.1	At which point was he on the Earth's surface? Explain	(2)
6.2	At which point was he furthest away from the Earth?	(1)
6.3	At which point was he approximately double the Earth's radius from the centre of the Earth? Explain	(2)
6.4	What is the astronaut's mass in kilograms?	(2) [7]

The graph below shows the energy involved in the formation of the carbon-carbon Bond. Use the graph to answer the questions that follow.

7.1	What is the bond energy for the formation of the C-C bond?		
7.2	What is the C-C bond length?	(1)	
7.3	What is the relationship between bond length and bond energy?	(1)	
7.4	Describe the shape of the graph in sections 1 to 4 on the formation of the C-C bond	(4)	
7.5	The molecules of both carbon dioxide and water have three atoms each, but they have different molecular shapes.		
	Name the shapes of both and explain the difference by referring to the polarity of the bonds and the molecules.	(4)	
7.6	Use Lewis structures to show the formation of the following molecules and write the name of each molecular shape.		
	7.6.1 BeCl ₂	(2)	
	7.6.2 PCI ₅	(2) [15]	

8.1 Copy the table given below on your answer book and complete the table

Substance	Type of particles	Type of intramolecular force	Type of intermolecular force	Polar, nonpolar or none
NH4CI				
CCI ₄				
NH₃				

(12)

8.2 The table below shows the boiling points and molar masses of the hydrides of group sixteen elements

Compound	Molar mass(g·mol ⁻¹)	Boiling point in(°C)
H ₂ O	18,0	100
H ₂ S	33,06	-61
H ₂ Se	79,96	-41
H ₂ Te	128,60	-2

- 8.2.1 Draw a graph of boiling point versus molar mass (3)
- 8.2.2 Explain the trend in boiling points of H_2S , H_2Se and H_2Te (4)
- 8.2.3 Explain why water has a higher boiling point than all the hydrides of group sixteen elements.

(2) **[21]**

- 9.1 Define the term Refraction (2)
- 9.2 The speed of a beam of yellow light travelling through a glass block is found to be 1,97 X $10^8 \text{ m} \cdot \text{s}^{-1}$
 - 9.2.1 What is the speed of the yellow light when it travels through air? (1)
 - 9.2.2 Determine the refractive index of the glass block? (3)
- 9.3 A light ray is incident on the face of a triangular glass prism in air, as shown in the diagram below.

Copy the diagram on your answer book and draw the path of the ray through the prism and as it emerges from the prism. Include the following labels in your diagram.

(Normal, angle of incidence, angle of refraction and refracted ray) (4)

9.4 FOR QUESTION 9.4 USE THE INFORMATION GIVEN IN THE TABLE BELOW.

Substance	Refractive index	
Air	1,0	
Water	1,33	
Perspex	1,5	
Glass	1,5	
Diamond	2,4	

A transparent block lies under water. A diver shines his flash light onto it so that the ray of light makes an angle of 59° on the block. The resulting angle of refraction is 27°. Identify the material that the block is made of.

(4) **[14]**

Monochromatic green light is shown through a very narrow slit A and the image is cast on a screen in a dark room as shown in the sketch below.

10.1 Define the term monochromatic. (1)
10.2 Describe the pattern that is observed on the screen. (2)
10.3 Give the name of this phenomenon and define this phenomenon. (3)
10.4 Name and state the principle that can be used to explain this phenomenon. (3)

[9]

QUESTION 11

In a class experiment, learners varied the pressure on an enclosed amount of gas, and obtained this set of results with respect to the pressure, volume and temperature.

Pressure (kPa)	Volume(cm ³)	Temperature (°C)
198	25,4	23
158,6	31,71	23
120	Х	23

11.1 In this experiment, what is/are the

11.1.1	Independent variable?	(1)
		· · · ·

- 11.1.2 Dependent variable? (1)
- 11.1.3 Controlled variables? (1)
- 11.2 State an investigation question for the experiment. (2)
- 11.3 These results illustrate a certain law. Name the law and state it in words (3)
- 11.4 Show clearly, by means of calculations that the first two sets of readings obey this law. (3)
- 11.5 Calculate the value of 'X' given in the table. (2)

The results obtained during an experiment to investigate the relationship between volume and temperature of a given mass of gas at constant pressure is given below.

Volume (cm ³)	Temperature(°C)
0,0546	0
0,0746	100

12.1 Make use of a calculation to show that this gas is behaving as an ideal gas. (3)

12.2 State two main assumptions that are made about the particles of an ideal gas. (2)

12.3 Calculate the volume of the given gas at 200°C.

12.4 Ammonium nitrate decomposes according to the following equation:

$$NH_4NO_3(g) \rightarrow N_2O(g) + 2H_2O(g)$$

A 2,8 g sample of ammonium nitrate is sealed and then heated in a I dm³ flask. The ammonium nitrate decomposed completely.

		[15]
12.4.2	in the flask in kPa?	
1242	that form. If the temperature in the flask 71°C, what is the pressure	(5)
12.4.1	Calculate the total number of moles of gaseous products	

TOTAL: 150

(2)

DATA FOR PHYSICAL SCIENCES GRADE 11

PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11

VRAESTEL 1 (FISIKA)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m⋅s ⁻²
Universal gravitational constant Universele gravitasiekonstant	G	6,67 x 10 ⁻¹¹ N⋅m²⋅kg ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m⋅s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J⋅s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N⋅m²⋅C ⁻²
Charge on electron Lading op elektron	-e	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	Me	9,11 x 10 ⁻³¹ kg
Mass of Earth <i>Massa van Aarde</i>	М	5,98 x 10 ²⁴ kg
Radius of Earth <i>Radius van Aarde</i>	R _E	6,38 x 10 ⁶ m

TABLE 2: FORMULAE

MOTION

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or/of } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_{f}^{2} = v_{i}^{2} + 2a\Delta x \text{ or/of } v_{f}^{2} = v_{i}^{2} + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \text{ or/of } \Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE

$F_{net} = ma$	p=mv
$f_s^{max} = \mu_s N$	$f_k = \mu_k N$
	w=mg
$F = G \frac{m_1 m_2}{d^2} or/of$	$g = G \frac{M}{d^2}$ or/of $g = G \frac{M}{r^2}$

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$
$n_i \sin \theta_i = n_r \sin \theta_r$	$n = \frac{c}{v}$

DATA FOR PHYSICAL SCIENCES GRADE 11 PAPER 2 (CHEMISTRY)

. .

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 11 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹
Molar gas constant Molêre gaskonstante	R	8,31 J·K ⁻¹ ·mol ⁻¹
Standard pressure Standaarddruk	p ^e	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K

TABLE 2: FORMULAE/TABEL 2: FORMULES

$\frac{\mathbf{p}_1 \mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{p}_2 \mathbf{V}_2}{\mathbf{T}_2}$	p∨=nRT
$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$n = \frac{V}{V_m}$	$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$

	1 (I)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1			_			ĸ	EY/SLE	EUTEL	At	tomic n Atoomo	umber ge <i>tal</i>									2 He 4
1,0	3 Li 7	1,5	4 Be 9					Electro Elektro	onegativ negatiw	vity► viteit	29 ల్ Cu 63,5	<mark>← S</mark> yi	mbol mbool			5 0'7 11	6 2'2 12	7 ຕິ N 14	8 •• •• 16	4,0 H 6	10 Ne 20
0,9	11 Na 23	1,2	12 Mg 24		Approximate relative atomic mass 13 14 15 16 17 Approximate relative atommassa 27 28 31 32 35													17 ⁰ . C 35,5	18 Ar 40		
0,8	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	23 ⁽⁰⁾ - V 51	24 ⊷ Cr 52	25 ۲۰۰۰ Mn 55	26 ⊷ Fe 56	27 ⊷ Co 59	28 ⊷ Ni 59	29 Cu 63.5	30 ⇔ Zn 65	31 ⊊ Ga 70	32 ⊷ Ge 73	33 ∾ As 75	34 ∛ Se 79	35 ∾ Br 80	36 Kr 84
0,8	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	1,4	40 Zr 91	41 Nb 92	42 ⊷ Mo 96	43 ⊕ Tc	44 ਨੇ Ru 101	45 Rh 103	46 Pd 106	47 - Ag 108	48 	49 1 115	50 ⊷ Sn 119	51 - Sb 122	52 Te 128	53 ℃ I 127	54 Xe 131
0,7	55 Cs 133	0,9	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ♀ Tℓ 204	82 ⊷ Pb 207	83 5 Bi 209	84 ਨੂੰ Po	85 5 ⁴ At	86 Rn
0,7	87 Fr	0,9	88 Ra 226		89 Ac			58 Ce	59 Dr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Th	66 DV	67 Ho	68 Fr	69 Tm	70 Yb	71
								140 90 Th	141 91 Pa	144 92 U	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr
								232		238											

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE